9. 3/900 FR L
i ‘/éz..g

(NASA-CP-150_ 4) NASTRAN HYDROELASTIC MODAL N79-25352
STUDIES. VOLUNME 2: PROGRAMMER

DOCUOMENTATION Final Report (Universal
Analytics, Inc.) 137 p HC AQ7/MF AQ1 Unclas

CSCL 20D G3/34 268062

{
22
'\&'};1 "‘"?5}.
A% 4 'IR
N 1979 ©) |
S RecEvEd 2)
?» NASA STIFACILITY <3,)
¢ ACCESS DEPT. I /fz> : ‘
C:J) //“I.J ‘ »{." :
P N L, ".) S/\
LJNIVYRSAL [\PLALYfih% 1~«&y 0
[o vrpeles \\ - .
\\\“”/ [, ;
_*_____,__~_,__,____————————*——————————’—""“"""~—_—'~__———_L-&J_b

FINAL REPORT
NASTRAN HYDROELASTIC MODAL STUDIES

VOLUME 11
PROGRAMMER DOCUMENTATION

Prepared for

Na*ional Aeronautics and Space Administration
Marshall Space Flight Center

Under Contract No. NAS8-31900

May 31, 1977

Prepared by

UNIVERSAL ANALYTICS, INC.
7740 West Manchester Boulevard
Playa Del Rey, California 90291

(213) 822-4422

sk Efame et

FOREWORD

This volume contains the programming documentation for the
NASTRAN updates and the MESHGEN program for the NASTRAN Hydroelastic
System. Volume I contains the Theory and Results. Volume III

contains the User Manual updates.

VOLUME II - TABLE OF CONTENTS

FOREWORD " = 5 e e 6 e e & s 2 s+ & & 3 4 ¢ & & & o ¢ * ¢ o

4.0 NASTRAN PROGRAM MANUAL UPDATES . . « « &« ¢ ¢ « o o &

. 4.1
4.2

4.3

4.4
4.5
4.6
4.7

OVERALL PROGRAM FLOW . . . &+ ¢ & o & o o o o o o

FUNCTIONA™ MODULE FLBMG (FLUID BOUNDARY MATRIX
GENERATOI -) L4 . - . L L] L - . L] - . L L] L)

FUNCTIONAL MODULE GFSMA (GENERAL FLUID/STRUCTURE
MATRIX ASSEMBLER) '« &« & o s s o « o o o o o o o«

UTILITY MODULE 'TRAILER' ¢« « « « + .
DMAP EXECUTIVE OPERATION MODULE COMEON
DMAP EXECUTIVE OPERATION MODULE CPMPPFF
MODIFICATIONS TO EXISTING NASTRAN SUBROUTINES .

5.0 MESHGEN PROGRAM DOCUMENTATION

(MESHGEN Programmer's Manual included in its entirety.

INTRODUCTION . & & & v ¢ 4 ¢« o v o o o o o o o o o &

1.
2.

4.
5.

7.

MESHGEN ORGANIZATION . . . «. ¢ ¢ « o ¢ o o « o« &
FILES AND COMMON BLOCKS « + + &« ¢ v ¢ ¢ ¢ o o o &

2.1 FORTRAN File Description + ¢« « « « .
2.2 Comwon Blocks . ¢ &« ¢« & v 4 o 4 ¢ e o o s

UTILITY SUBROUTINES . . . ¢ « o ¢ 4 ¢ o o o o « »
DATA GENERATION AND I SUBROUTINES
LEXICAL ANALYSIS SUBROUTINES . . « « . . « .+ . .
PLOTTING SUBROUTINES . . « « &« ¢ & ¢ & &+ & & o &
COMPUTATIONAL SUBROUTINES . . . + « ¢ ¢ o o« ¢ o &
SYSTEM CONSIDERATIONS . . ¢« + ¢ o o ¢ o o ¢ o o o

8.1 Overlay for MESHGEN s
8.2 Machine or Facility Dependent Routines . .

ii

Ry T

Page

4-1

4-1

4-8
4-8

4-27
4-41
4-43
4-45
4-47

5-1
5-1
5-4

5-5

5-8

5-26
5-42
5-52
5-61
5-69

5-69
5-70

e e e g

> "Ml&&t.&w-i‘MW R

4.0 NASTRAN PROGRAM MANUAL UPDATES

The operational steps, data descripticns, and program code for the new

NASTRAN hydroelastic analysis systen are described in this section. The format

is similar to that of the NASTRAN Programmer's Manual for the module and sub-
routine descriptions. The overall flow of the system is described, followed

by the descriptions of the individual modules and thelr subroutines.

4.} OVERALL PROGRAM FLOW

From 2 programmer's viewpoint the NASTRAN hydroelastic normal modes anal-
ysis is a straight forward extension of Rigid Formet 3, the structural normal
modes 21alysis. The overall flow of the problem for a direct formulation,
shown in Figure 1, describes the key steps anud data blocks used in the DMAP
program. Because of the special characteristics of the fluid degrees of free-
dom, the USET definitions in NASTRAN have been modified. These components

describe the size and characteristics of the matrices and vectors.
The names of these new degree-of-freedom sets ere defined below:

u_: All structure and fluid components

g
u: Structure components
uy: Fluid components
ufr: Free surface degrees of freedom
u_: Reduced structure components

u_: Reduced structure plus free surface displacements = solution set

In the DMAP the names of matrices and vectors generally correspond to these
sets, For instance, AXY is a matrix with rows defined by structure points (x)

and columns corresponding to fluid points (y).
The steps described in Figure 1 are:

Step 1: The normal steps used in Rigid Format 3 are used to build the stiff-
ness (KGG) and mass (MGG) matrices for both structure and fluid.
The matrix terms for the fluid points are actually pressure/flow

functions rather than the normal displacement/force functions. The

i S ta e W

PP

4-2

Key Input Key Output
Blocks __Blocks
‘ START >
y

1) USET
BEGIN + GP4
(Normal NASTRAN) MGG
KGG
2)
FLBMG*:
Fluid/Boundary
Matrix Generator
DKGG 3) AXY
AF DMAP Matrix MXX
Operations PARTN
MGG and MERGE KYY
KGG KXX
4)
SWITCH:
USET +> USETS
*New Modules
FIGURE 1. NASTRAN HYDROELASTIC DMAP FLOW (Direct Assembly)

l“ Key Input

Blocks

Use Checkpoint

Key Qutput
Blocks

GM, G@,

MAA

DKAA

g

GYA

: Tape
!
o,
USET 6)
; MXX MCE1 + SMP2
. (Normal NASTRAN)
KXX
USET 7)
MCE2 -+ SMP2
GM, GP Reduce Fluid
Gravity Stiffness
DKXX
USETF 8)
DKAA
GFSMA*:
AXY General Fluid/Structure
Matrix Assembler
KYY
KAA
FIGURE 1.

4-3

*New Modules

NASTRAN HYDROELASTIC DMAP FLOW (Cont'd)

LB

Key Input

Blocks

@3

GYA

PHI

[c
v
m g
=
N2

USETS

PHIA

PHIY

PHIX

&3

Key Output
Blocks
9 Solution: é PHI
(Normal NASTRAN) LAMA
10)
DMAP: X_PI-IIY
Fluid Pressure
Recovery PHIA
\
11)
SDR1:
Recover Structure PHIX
Displacements
12)
DMAP Merge —\-‘ PHIG ;
13)
SDR2 - END

Normal NASTRAN
Print and Plot

(EXIT >

4-4

*New Modules

FIGURE 1. NASTRAN HYDROELASTIC DMAP FLOW (Cont'd)

Step 2:

Step 3:

Step 4:

USET data block, generated by medule GP4, describes all degrees of

freedom.

The FLBMG (Fluid/Boundary Matrix Generator) Module generates the area
factor matrix, AF, and the additional stiffness due to gravity, DKGG.
It also produces two new USET data blocks. USETF contains the fluid
point flags and USETS describes only structure points.

The following DMAP partitioning operations are coded in the system:

a) Partitiong +*x+y

Kxx ! 0
[k, 1 = |-35-te--
88 | ? 1Ky]
™M 1 0
[Mgg] = -55_%-__
[0 | 0]
[R] = [R {0]
- i Axy
[AF] = TR
| Yy
”Dxxx: 0
[DK] = |-==c |
0 !DK
gL | = vy
b) Partition y -+ fr + 3
i o "
DK 1 0
frf
[DKyy] =D ——-E- E—:—..-.
L 0 40
A
[A] == _EEZ
Yy ! 0

The SWITCH module is used to replace the USET data block with the
new block which describes only structure points. The normal struc-
ture processing modules will use this data block and operate only

on the subsets of the uy set.

4=5

Steps 5 & b: For non-restart problems, the structure stiffness and mass
matrices are constrained and reduced in the usual manner. For
restart problems with no structure changes, these operations are by-
passed by the use of a PARAM bulk data card.

Step 7: For fluid prob:ems with gravity effects, the incremental stiffness
matrix, DKXX, is constrained and reduced to correspond to the reduced

structure points.

Step 8: Module GFSMA (General Fluid/Structure Matrix Assembler) performs the
operations to merge the structure and fluid matrices into the solu-
tion matrices (see Section 4.4 for the detailed steps). The output
matrices correspond to the reduced structural displacements and the

free surface displacements.

Step 9: The NASTRAN solution modules are executed at this stage. For normal
modes, the READ (Real Eigenvalue Analysils - Displacement method)
module is used. However, the capability exists to restart in a

dynamics analysis rigid format.

Step 10: MPYAD is used to recover fluild point pressures and free surface point

displacements:
(6,100 = [¢,)

The structure and free surface displacements are separated, d + a + fr.

¢
4] = [z
[¢fr

The fluid pressures and free surface displacements are merged:

Steps 11 - 13: The dependent displacements for the structure points are
recovered with Module SDR1, the fluid displacements and pressuras

are merged with the displacement vectors, and the normal NASTRAN

[N

. %o

output processing is executed. The displacements of fluid free sur-~
face points are printed and plotted. The pressures on the interior
fluid points may be printed. All structure displacement, force,

stress, etc. data is processed with the standarc —-~utines.

4-7

Sy

oy

A" '.‘2

4.2 FUNCTIONAL MODULE FLBMG (FLUID BOUNDARY MATRIX GENERATOR)

Entry Point: FLBMG

Purpose

Teo assemble the hydroelastic area factor and gravity stiffness matrices.
In addition, the hydroelastic USET vector is constructed for defining the

various structural and fluid sets.

DMAP Calling Sequence

FLBMG GE@M2,ECT,BGPDT,S1L,MPT,GE@M3,CSTM,USET,EQEX1N/USETF,US: TS,AF,
DKGG/S ,N,NPGRAV/S ,N,N@FREE/S,N,TILT $

Input Data Blocks

GEPM2 - Element Connection Data

ECT - Element Connection Table

BGPDT - Basic Grid Point Definition Table
SIL -~ Scalar Index List

MPT -~ Material Properties Table

GEPM3 -~ Gravity Load Data

CSTM - Coordinate System Transformation Matrices

USET - Displacement Set Definition Table
EQEXIN - Equivalence between external and internal grid points

Notes

1. The CSTM may be pucged.
2. GEPM3 may be purged only if no gravity effects are computed.

Qutput Data Blocks

USETF - Set Definition Table, fluid and structural points
USETS - Set Definition Table, structural points only
AF ~ Fluid Area Factor Matrix
DKGG =~ Gravity Stiffness Matrix
Note

1. DKGG will be purged if no gravity effect is computed.

4-8

G

Parameters

NOGRAV ~ Input -~ integer - no default. Flag which specifies wnether
gravity effects are to be computed (-1 ignores gravity).

N@FREE - Output - integer - no default. Flag which specifies whether a

fluid free surface exists (-1 implies no free surface),

TILT - Cutput - complex - default= (1.0,0.0). Components of the normal
vector to the free surface. Used as input to SDR2 for plotting.

Method

Subroutine FLBMG is a small driver which calls the following routines to

perform the various phases of matrix generation and assembly.

1. FLBELM processes the fluid/structural boundary elements and the fluid
free surface elements. In addition, vectors describing the connec~
tivity of fluid and structural elements are created for use when

allocating core during matrix assembly.

2, FLBSET produces the two new fluid USET vectors for use in the hyc-o-

elastic analysis.

3. FLBEMG calculates the individual element area factor and element

gravity stiffness matrices.

4. FLBEMA assembles the element matrices into full size output matrices.

Subroutines

The utility subroutines PRETRD and PREMAT are called by FLBEMG so that
lower level subroutines may call entry points TRANSD and MAT to obtain coordi-
nate system transformation matrices (CSTM) data and material properties data,
respectively. The utility routines GMMATD, DCRASS, and DNPRM are also used

for basic in-core matrix computations.

Jor purposes ¢f communication between subroutines of the FLBMG module, the

following common blocks are used.

Block Variables in Order

/FLBPTR/ ERROR - Fatal error flag¢
ICARE - Next available word of core
LCARE - Length of open core
IBGPDT - Start of BGPDT data

4-9

/FLBZZ1/

/FLBZZ2/

/FLBF'L/

NBGPDT
ISIL

NSIL

IGRAV -
NGRAV -
IGRID -
NGRID -
IBUF1 -
IBUF2 -
IBUF3 -~
IBUF4 -
IBUF5 -

CE¢M2
ECT
BGPDT
SIL
MPT
GEgM3
CSTM
USET
EZEXIN
USETF
USETS
AF
DKGG
FBELM
FRELM
CONECT
AFMAT
AFDICT
KGMAT
KGDIST

Length of data
Start of SIL data
Length of data
Start of GRAV data
Length of data
Start of Grid Point Connectivity Table
Length of table
GINg buffer 1

GIN® buffer 2

GINg buffer 3

GIN® buffer 4

GIN@ buffer 5

Open core for the first three phases of matrix

generation.

Open core for the last phase, or matrix

assembly.

GIN® file numbers for the -rarious input, output

and scratch files.

4-10

T e

Subroutine Name: FIBELM

Entry Point: FLBELM

Purpose: To process the fluid elements constituting the fluid/structure

boundary and to determine connectivity between these elements.

Calling Sequence: CALL FLBELM

Method: The BGPDT data describing grid points is opened and read into
open core. GE@M2 is then opened und the record containing CFLSTR bulk
data cards is located. The data is then read and stored below the BGPDT
data in the Element Boundary Table as follows:

Word No. Description
1 Fluid element ID
2 Structural element ID
3-6 (zero)
7 Gravitv ID

The ECT data block is then read and each 2-D element type is processed.
As each element is processed, if the structural element is connected to
any fluid element, the grid points of the structural element are inserted
into the four zero words in the element boundary table record. (If the
structural element is triangular, only three grids are found.) The CFREER

cards are then read from GE¢M2 and stored in a similar seven~-word record

in core.
Word No. Description
Fluid element ID
-1
3 Element FACE ID
4-6 zero
7 Gravity ID

The ECT is then read again and only fluid elements are processed. For each

element the following steps are performed.

If the fluid element is on the free surface (the structural element
ID will be negative):

4-11

e e G e

¥

1. Subroutine FLFACE is called to locate the 3 or 4 fluid grid points

on the desired face which forms the free surface.

2. A 7-word record is written on file FRELM which contains the fluid
element ID, material ID, gravity ID, and the fluid grid points
defining the desired face.

If the fluid element is connected to a structural element:

1. Subroutine FLFACE is called to locate the 3 or 4 fluid grid points

on the face which forms the boundary.

2. A 12-word record is written on file FBELM which 1s similar to
FRELM except the structural element ID and grid points are also
included.

As the above steps are being performed a table of grid point commectivity

is aiso created. This table provides three pieces of information:

1. The maximum number of structural grid points connected to each

fluid point on the boundary.

2. The maximum number of structural grid points connected to each

structural point on the boundary.

3. The maximum number of fluid points connected to each fluid point

on the free surface.

The open core layout for FLBELM is as follows:

prprE e T T 0 aone

s e

IBGPDT Grid Point Data
4 words/entry

IELM | Fluid element data for boundary
and free surface 7 words/entry

' IVEC | Grid point connectivity table
IBUF3 | GIN@ buffer for FRELM
IBUF2 | GIN@ buffer for ECT
IBUF1l | GIN@ buffer for GE@M2 and FBELM

[P

b b S & 4 o A WO K
W b e A

| e

4-12

Subprogram Name: FLFACE

Entry Point: FLFACE

Purpose: To locate the fluid grid points which describe the face of a
fluid element. The particular face may be specified by either a face
number or the grids of a structural element which form a boundary with

the face.
Calling Sequence: CALL FLFACE (TYPE,ECT,EBT,ELT)

TYPE - The element type

ECT - The ECT record for the desired fluid element

ELT - The element boundary table entry for the fluid element.
The 7-word block, as described in the previous section,
contains either the fluid face number or the structural
grid ID's.

Fluid grid points located (3 or 4)

GRID
Methed: If the fact ID is presented:

The corresponding fluid grid points are obtained directly. The face
numbering conventions are described in the User's Manual under the

bulk data description for each fluid element type.
If the structural grid points are provided:

1. Find normal and centroid of structural element face

=Y

Rp2 Ry =}y

Riz = Ry~ Ry
- Ri2 ¥ Ryy
KS = - -~
EPERTY
- _ -}-.\ - -
Rc = 3(R1 + R2 + R3) for triangle element
-~ _ -]:-.-L - -~ -
Rc = 4(R1 + R2 + R3 + R&) for quad element

where Ri are coordinates for structural grid points obtained from the
BGPDT.

4-13

[S——

2. For each face of the fluid element, find the angle between the fluid
face and structure face. If this angle is less than 30°, also find
the distance from the centroid of the structure element normal to the

face of the fluid element.

T2 ™1

- = - --L

13 I3 =~ %y

R Ty, X T

R - f12 Alg_
715 x 1y

IF |k, - K | < 0.866 THEN

Ah = le . (RC - ;l)l

where r, are coordinates for fluid grid points obtained from the BGPDT.

3. The face choosen has the smallest Ah value with the angle between

faces less than 30°.

Subprogram Name: FLBSET

Entry Point: FLBSET
Purpc.z: To construct the hydroelastic USET vectors.
Calling Sequence: CALL FLBSET

Method: The SIL 1list is read into core beneath the BGPDT and the USET
vector after that. The list of grid point connectivity is then written
to the CONMECT file in two files, one file for each matrix to be assembled

later. “he files consist of three-word records as follows:

Word No. Description

SIL number
Maximum grid points connected to this SIL
3 Maximum SIL's connected

The USET table is then read into core. A list of free surface grid points
i then constructed by examining each entry in the grid point connectivity
table. The BGPDT is then scanned and the following USET bits are set:

4-14

Ap———

" WWMW..‘M -~
" PR R

If fluid point:
Set Y bit

Search list of free surface grids; if present, set fr, Z, and a bit,

otherwise point is interior fluid point and set i bit.

If structural point:

Set X and Z bit

If a bit is set, set a

Hydroelastic USET bit positions are as follows:

(Set Bit Position
Ua 25
Ux 9
U 8
y

Ufr 7

U 6
z

U- 5
a

Ui 4

Description §
a+ fr
Structure only

Fluid only

Free surface

x + fr

a bits (structure only)

Interior fluid point

The new USET vector is then written to the USETf file. In addition, only

the structure points, x bit set, are written to the USETS file.

The open core layout for FLBSET is as follows:

IBGPDT

ISIL

TUSET

IFREE

IVEC
IBUF1

Grid point data

4 words/entry

SIL list

USET vector

List of free surface grids

Grid point connective table

GIN® buffer

4-15

- i

Subprogram Name: FLBPRT

Entry Point: FLBPRT
Purpose:

1. Prints, at user request via DIAG 23, a list of degrees of freedom.
For each degree of freedom, an indication is made identifying the sets
to which it belongs.

2. Prints, at user request via DIAG 24, the contents of selected dis-
placement sets. For each set, a list of all degrees of freedom

belonging to the set given.
Calling Sequence: CALL FLBPRT (IUSET,IC@RE,IBUF)

IUSFT -~ Open core location of USETF table
ICORE - Start of open core for storage of EQEXIN
IBUF ~ GIN® buffer location

Method: The DIAG flags are tested and local variables set. Table EQEXIN
is then read into open core and sorted. If DIAG 23 is set, Table USETF
(already in open core) is examined and the external degree of freedom is
extracted from EQEXIN and printed along with the set indications. If

DIAG 24 is set, the transpose process takes place.

Subprogram Name: FLBEMG

Entry Point: FLBEMG

Purpose: To calculate element gravity stiffness and area factor matrices.
These element matrices, along with dictionary entries to describe them,

are wriiten to files for use in the matrix assembly phase.
Calling Sequence: CALL FLBEMG

Method: The material property data is read into core below the SIL list
using utility PREMAT. PRETRD is then called to set up coordinate trans-
formation data in core. GE@PM3 is then opened and GRAV bulk data cards

are located and read into open core. The open core layout for FLBEMG will

then be:

4-16

IBGPDT

ISIL

IMPT

ICSTM

IGRAV

IBUF5
IBUF4
IBUF3
IBUF2
IBUF1

Grid point data

4 words/entry

SIL list

Material data

Transformation data

Gravity data

GIN® buffer for KGDICT

GINY buffer for AFDICT

GIN® buffer for KGMAT

GING buffer for AFMAT

GIN® buffer for FBELM

File FBELM is then read and, for each element, subroutine B@UND is

called to calculate the area factor matrix and gravity stiffness matrix

for the element. The gravity stiffness calculations will be performed only

if gravity loads are present. These matrices are then written to files

AFMAT and KGMAT respertively. An AFMAT entry contains several 3 x 1 matrix

partitions as follows:

Word No.

1-3
4~6

Description

fluid SILS
structure SILS

for triangle faces

7-60

9 x 3 matrix

for quad faces

7-102

12 x 4 matrix

The KGMAT file is written in a similar manner except is consists of

3 x 3 partitions. Dictionary ertries are then written to the AFDICT and

4-17

-y
1

KGDICT files to describe each column of the above matrix partitions.
The file position is also recorded so the matrix partitions may be accessed

in a random sequence during assembly. A AFDICT entry is as follows:

Word No. Description

Column SIL number

File position

After the FBELM file is exhausted, a similar procedure is performed
with the FRELM file. The major difference is that subroutine FLFREE is

called to compute the frea surface effects on these elements.

Subprogram Name: FLFREE

Entry Point: FLFREE

Purpose: To compute the area factor and gravitational stiffness matrices

for a fluid element on the free surface.
Calling Sequence: CALL FLFREE (FRREC,AFE,NAFE,KGE,NKGE)

FRREC ~ FRELM record for a fluid element

AFE - Element area factor matrix. Maxiwum size is 4 x 4 double
precision words
NAFE - Number of words in the AFE matrix
KGE - Element gravity stiffness matrix. Maximum size is 4 x 4 double
precision words
NKGE -~ Number of words in the KGE matrix
Method:

1. If the fluid face is quadratic, it is divided into fonr overlapping
triangles for steps 2 through 4.

2, The area, A, of the fluid triangle is computed.

3. The area factor terms for this triangle are computed and inserted

into the full size element matrix.

_Van2 14
(A5 = 1 a6 1-=3
for
1=1,2,3
4 =1,2,3

4-18

4. 1f gravity loads are requested, the additional stiffness terms are

computed and inserted into the el-ment matrix.

[Kijl = pg[Aij]

for
i=1,2,3
j=1,2,3

where
p = fluid density

g = gravitation constant

5. If the fluid face is quadratic, the area factor and gravity matrices

are divided by two to account for the overlapping triangles.

Subprogram Name: FLBEMA

Entry Point: FLBEMA

Purpose: To assemble the element matrices into either the AF or DKGG

matrix.
Calling Sequence: CALL FLBEMA (TYPE)

TYPE -~ 1 for AF matrix
2 for DKGG matrix

Method: One G-size vector is allocated at the top of open core. This
vector will be the column list, where each entry points to the open core
location where data for that column is held. The column vector is then
zeroed and the CPNECT file is opened and positioned for the type of matrix
being built. As each entry from the C@NECT file is read, the necessary
core is allocated to hold the terms for that column. A pointer to this
core is inserted into the column poirter vector. The amount of core

required for each column is:
1 + MAX GRIDS + 2 * MAX SILS

This area will then hold one SIL value and up to 3 double precision matrix

terms fur each grid point entry in the column.

4-19

(3

ICPL | Column pointer

-N\ Next available space
+ SIL
| —
Storage for matrix columns 3 matrix terms
> — —
- SIL
1 matrix term
T
BUF2 | GIN@® buffer for AF, DKGG and xMAT

BUF1 | GIN® buffer for CPNECT and xDICT

This process is continued until the CPNECT file is exhausted or insuf-
fient core remains to held the next column. The appropriate dictionary
file is then read and for each entry it is determined if the desired column
is in core for this pass. If it 1s, the matrix terms are obtained from the
matrix term file, xMAT, and stored in core. When ali dictionary entries are
processed, each column in core is written to the output matrix with subroutine
PAKCAL. Note that only the columns with nonzero terms are stored in core,

making it necessary to pack out null columns for the others.

If any non-zero columns remain, i.e., entries remain in the CPNECT file,
core is reallocated and additional passes are made through dictionary and

matrix term files to build these columns.

The open. core layout for the assembly phase is as follows:

Subroutine Name: PAKC@L

Entry Point: PAKC@L

Purpose: To build the single matrix columns and pack it out to the
output matrix.

Calling Sequence: CALL PAKCAL (REC,LREC)

REC - In-core record containing the SIL's and matrix terms for the
column

LREC - Length of this record
4-20

Method:

1. The entries for each SIL (one SIL and up to three matrix terms) are
sorted on the absolute value of the SIL.

2. 1If any duplicate SIL's exist, their terms are added together.

3. The individual matrix terms are then packed to the file using ZBLPKI.

Subroutine Name: B@UND

Entry Point: B@UND

Purpose: To obtain area factor and stiffness matrices as function of

area common between specified fluid and structural element faces.
Common Sequence: CALL B@UND(FBREC,AFE,NAFE,KGE,NKGE)

FBREC(12) - Fluid boundary record:
(1) Fluid element ID
(2) Structural element ID
(3-6) (internal) Grid nos. for structural element face
(7) Gravity ID
{8) Material ID
(9-12) (internal) Grid nos. for fluid element face

AFE(48) ~ Area factor matric storage

NATE - Number of (single precision) storage locations in AFE
returned by subroutine BPUND.

KGE - Stiffness matrix storage.

NKGE - Number of (single precision) storage locations in KGE

returned by subroutine BPUND.

Method: After transforming coordinates of both element faces into

system in which x/y coordinates of point 1 and y coordinates of point 2

of the fluid element are zero, the area common to both faces when projected
on the x,y plane is obtained by determining the coordinates bounding this
polygon of common area. The load distribution factors and the area

factors are then calculated by isoparametric interpolation. After any
required gravitational stiffness terms have been added to the stiffness
matrix, both the area factor (AFE) and stiffness (KGE) matrices are
transformed to global coordinate system (if required) and the stiffness

matrix is rearranged to column storage to conform to NASTRAN requirements.

Design Requirements/Limitations: Neither element (face) may have more

than four edges. If there is no common area, User Warning Message 8014 is

4-21

printed. If an undefined gravity ID is referenced, User Fatal Message 8013 ;

is printed. When element geometry is such that isoparametric interpolation ,
o

feils, User Fatal Message 8005 is printed. -
Subroutine PTINTR (PoinT of INTeRsection)

Entry Point: None

Purpose: Returns {double precision) xy coordinates of point of inter-

section (if any) of two lines.

Calling Sequence: CALL PTINTR(A,AA,B,BB,S,K,EPS)

A(2),AA(2) - xy coordinates of end points of line segments A and AA,

B(2),BB(2) and B and BB (real, double precision)

S(2) - Xy coordinates (returned) of point of intersection of
line segments AAA and BBB; S = (0,0) if no point of
intersection (raal, double precision).

K - Condition flag (integer) returned (single precision):

= 1, point of intersection is S

= 0, point of intersection is S, an end point of
one of the lines

= -1, no point of intersection

EPS(2) - Calculation significance tolerance (real, double
precision): EPS(1l) for area, angle calculations; EPS(2)

for length calculations.
X=0 if [X] g€

Method: K 2 0O returned only when point of intersection, S, exists; e.g.,
non-parallel line segments do intersect at § or segments of same parallel
line have some segment in common (or are within €; of each other). K =10

is returned when distance between § and any end point of AAA or BBB is < €,.

Design Requirements* All lines are defined in two dimensions only; i.e.,
only (x,y) values are considered; all real variables supplied to and returned

from PTINTR, as well as all internal calculations, are dcuble precision.
Subroutine L@CPT (LOCate PoinT)

Entry Point: None

Furpose: Determines location of each of N points, P, relative to surface

bounded by M points, S.

4-22

Calling Sequence: CALL LOCPT(N,P,M,S,K,KS,EPS,LdC)

N ~ Number (< #) of points to locate (integer)
P(3,4)

m ~ Number of points (< 4) describing boundary of surface.

Coordinates of points to locate (real, double precision)

$(3,4) - Coordinates of surface bounding points (real, double

precision)
K(2,4) - Indices (within 8) cf end point of surface .dges
KS(3) - Unit vector normal to surface (real, double precision)
EPS(2) ~ Calculation significance tolerance (real, double precisior):
EPS(1) for area, angle calculation; EPS(2) for length
caiculations.
X0 if |X] <e
L#C(4) - Location indication for each point ctested (integer):

= 1, point inside surface boundary
= 0, point on surface boundary

= ~1, point outside surface boundary

Method: VP, the vector from leading end point of cach surface edge to

point to locate is tested against the vector along surface edge.

The point is within surface boundary (L@C = 1) when it is not 'outside’

any edge or 'on' any edge.
The point is on a surface edge (L@C = 0) when:
[vP| < e,
The point is outside a surface edge (L@C =~ -1) when:
(VE x VP) - k < -€, or
(VF. » VP) £ £2 or
jvE| + e, < |VP|
Design Requirements/Limits: All real arguments and computations are
double precision. Not more than four points may be positioned relative

to a surface with not more than four edges (boundeu by not more than

four points).

4-23

Subroutine PPLYPT

Entry Points:

(P@LYgon PoinTs}

None

Purpose: Determine coordinates of points describing the polygon of area

common to a triangle (structural element) and another figure (fluid element)

of three or four sides.

Calling Sequence:

LACTPF(3)

STEDGE(2,3)

TR(3,3)

NGRIDF
FLEDGE(2,4)

FL(3,4)

LOCFPS (4)

EPS(2)

NPALY

P(2,7)

CALL P@LYFT(LPCIOF,STEDGE,TR,NGRIDF,FLEDGE,FL,LACF 4SS,
EPS,NP@LY,P)

Indication of position of triangle point relative to
other figure (see Subroutine L@CPT) (integer).
Indices of end points of triangle edges (in array TR)
(Integer).

Rectangular coordinates of structural element (real,

AR i oA

double precision). i
Number of points for fluid element (integer). :
Indices (in array FL) of endpoints of fluid element

edges (integer).

Rectangular coordinates of fluid element points (real,

double precision).

Indication of position of fluid points relative to

structural element (integer).

Calculation significance tolerance (real, double pre-

cision): EPS(1l) for area, angle calculation; EPS(2) for

length calculaticens.
X=0 if |X] <€

Number of points (£ 7) found to describe polygon of
common area (integer).
X,y cocrdinates of points describing polygon of

common «rea (real, double precision).

ethod: Starting with first triangle edge, successive points of inter-

section of (structural) triangle edges and fluid element edges are
obtained (by Subroutine PTINTR).

Design Requirements/Limitations: All real arguments and computations

are double precision.

4-24

v~ egr

Function DAP@LY (Double Precision Area of a PPLYgon)

Entry Points: None
Purpose: Obtain area of a polygon.
Calling Sequence: A = DAPPLY(N,P)

N £ 10 - Number of points describing polygon (integer, single
precision).
P(2,N) - x,y coordinates of points describing polygon (real,

double precision).

Method:
A = - f y dx

Contribution from side whose endpoints are Pi’ ?j is:

Aij = 1/2 [(y; + yj) * (xg - xj)]

Design Considerations:
1. Polygon must not have more than 10 sides.
2. All real arguments and internal computations are double precision.

Function DVMAG (Double Precision Vector MAGnitude)

Entry Points: None
Purpose: Obtains magnitude of a vector.
Calling Sequence: X = DVMAG(V,EPS)

V(3) - i,j,k coefficients of vector, V1 (real, double precision)
EPS - Calculation significance tolerance (real, double precision):

EPS(1) for area, angle calculation; EPS(2) for length

calculations.
x=0 if |X| <
Method:
A = V-V
DVMAG = VA ifA>e>0

= 0 if A<e

4-25

o e A e SRR AN

Design Requirements: All real arguments and internal computations are

double precision.

Subroutine DCR@SS (Double precision CRPSS product)

Entry Point: DNPRM
Purpose: Obtain cross-product of two vectors.
Calling Sequence: CALL DCR®3S(X,Y,Z)
X(3),Y(3),2(3) - i,j,k coefficients of vectors i,?,i.
Method: Z = X x Y

Design Considerations: All arguments and internal computations are

double precision.

Subroutine DN@RM (Double precision N@RMalization of a vector quantity)

Entry Point: DCRJSS
Purpose: Normalize a vector to its magnitude.
Calling Sequence: CALL DNPRM(X,MAG)

X(3) - i,j,k coefficients of vector X (real, double precision).

MAG ~ Magnitude of vector X (real, double precision).

Method:
- Radad
MAG = A, A>0
5 - Xj Xj , X

MAG MAG MAG
Design Considerations:

1. DNPRM returns un-normalized vector quantity, X, when A < O.

2. All arguments and intermal computations are double precision.

Diagnostic Message

Messages 8000 through 8014 may be issued by this module.

4-26

4.3 FUNCTIONAL MODULE GFSMA (GENERAL FLUID/STRUCTURE MATRIX ASSEMBLER)

Entry Point: GFSMA

Purpose

To assemble the stiffness, mass and pressure transformation matrices in

a hydroelastic analysis.

DMAP Calling Sequence

GFSMA AXY,AFRY,KYY,DKaA,DKRFFR,KAA,MAA,GM,G@,USET ,USETF,PHIA ,PHIX,

LAMA/KMAT ,MMAT,GIA,P@UT,HC/V,N,NAGRAV/V ,N,NOFREE/V,Y ,KC@MP/
V,Y,COMPTYP/V,N,F@RM/V,Y ,LMPDES $

Input Data Blocks

AXY - Structure/fluid area matrix

AFRY ~ Free surface area matrix

KYY - Fluid stiffness matrix

DKAA - Structure gravity stiffness matrix

DKFRFR - Free surface gravity stiffness matrix

KAA - Reduced structure stiffness matrix

MAA - Reduced structure mass matrix

GM — Multipoint constraint transformation matrix Direct only
Gg - Omit point transformation matrix

USET - Structure only set definition table

USETF - Fluid and structure set definition table

PHIA - Solution eigenvectors, A-set
PHIX - Solution eigenvectors, X-set Modal only
LAMA - Solution eigenvalue table
Notes
1. AFRY and DKFRFR may be purged if no free surface points exist.
2. DKFRFR and DKAA may be purged if no gravity exists.
3. GM may be purged if no multipoint constraints exist.
4. GP may be purged if no omit points exist.
5. PHIA, PHIX, and LAMA may be purged if the direct formulation is used.
6. KAA, MAA, GM. GP, and USET may be purged if the modal formulation is used.

4-27

Gutput Data Blocks

KMAT - Combinaciun fluid/structure stiffness matrix

MMAT - Combination fluid/structure mass matrix

GIA - Pressure transformation matrix

PPUT - Partitioning vector for the modal displacements

HC - Constraint transformation matrix for incompressible calculations.
Notes

1. P@PUT will be purged if the direct formulation is used.

2. HC will be purged if the incoipr=-sible calculations are not used.

Parcmeters

NAGRAV - Input - integer - no default. Flag which specifies whether

gravity effects are present (-1 no gravity).

N@FREE - Input - integer — no default. Flag which specifies whether

free surface exists (-1 implies no free surface).
KCPMP - Input - real - default = 1.0. Compressibility factor.

CYMPTYP - Input - integer - default = -1. Type of compressibility
calculation to be used:
-1 = structure and free surface are coupled with a spring
to resist volume change
+1 = incompressible - constraint equation is generated to

restrict volume change

FPRM - Input - integer - default = 0l. Type of formulation to be used:
-1 = direct formulation

+1 = modal formulation

-1. Number of structure modes to

IMPDES -~ Input - integer -~ default
be used in the modal formulation (-1 indicates all available
modes are used).

Method

Subroutine GFSMA is a small driver which calls the following routines

based on the input parameters:

4-28

e

1. GFSDIR - assembles the combined stiffness and mass matrices using

the direct formulation.

2. GFSM@D - assembles the combined stiffness and mass matrices using

the modal formulation.
Subroutines
GFSDIR

Subroutine Name:

Entry Point: GFSDIR

Purpose: To assemble the fluid matrices using the direct formulation

method.
Calling Sequence:

Method:

CALL GFSDIR

1. The structure/fluid area matrix is reduced to a set using the following

steps.

If MPC's are present, the MPC points are partitioned out.

[a,,]

(a1

If SPC's are present, the

(a,,)

If omits are present:

(a1

fy

; [A,,]

A
=> _I.I.Z

A
my

- T
= A1+ 16,1 A,]

SPC points are partitioned out.

=> - gz
sy
Aoy

" T
= [R) +[6,1 1A]

Subroutines GFSPIN, SSG2B, and CALCV are utilized to perform these

calculations.

4-29

R T e ol .
[V .
P [P N S

2. 1If free surface points exist, they are merged with the reduced area

matrix using subroutine GFSMRG.

3. If SPC points exist on the fluid they are partitioned out from the area

and fluid stiffness matrices

(A 1 = [A,1A]

jw W]

4, If no SPC points exist on the fluid, the first fluid point is reduced out

to remove potential singularities.

K K
[K] = _1“.]:'..ll
K., 'K,.
vy 311733

generate [H] (N(y—l) by Ny transformation) using subroutine GFSH.

-1 (n-1) -1 -1...
-1 -1 (n-1) -1.

]
Z |

(H]

. T
[A,,] = [EI[A]

For COMPTYP < 0, the compressibility factor is then generated using
subroutine GFSCPM. This matrix contains the spring used to restrict

volume change.

4-30

e PPN T MY T T et SR e P ST, M

{Ac} = {1}

(A,
(K] = kcowe {A} (A)

For COMPTYP > 0 a constraint eauation is generated to restrict

volume change. Subroutine GFSHC performs these calculations.

{Ac} = [H]}{1}

The largest row in A.,m, is then chosen. The ntP row of matrix Hc
is null and all other columns, i, have a 1.0 on the diagonal and

-Aci/Acm in row m.

]
H1 = (_)_i_:fﬁ.j:ffsg
¢ o/ 1

The pressure transformation matrix is then found by solving the

following equation:

(R ;1061 = (A

Matrix utilities FACTOR and SSG3A are used to perform this solution.

If gravity exists, the additional stiffness is added in

K .]

aa [Kaa] + [DKaa]

otherwise,

K1 = [K]

aa aa

The free surface stiffness is then merged in with subroutine GFSMRG
if it exists.

Ry} O
B T - [R_]
i 0 :DKfrfr ww
[Maa | © -
s L
! 04 0 ww

I .

The comhined stiffness and mass matrices are computed.
m1 o= 1+ (s, 1706,)
ww WW jw Jw

If no SPC's existed on the fluid for CPMPTYP < 0

(K1 = (K 1+ I[K]
for COMPTYP > O
(K 1 = (H IR]{H]
ww (o] ww C

[2rr] CRE RN

[}

a 1.0 is then added to row m column m of [MT] using subroutine GFSMT.

l.Oi 0
e 1 = [Mr] + [—5-—;7;—]
§

otherwise,

K 1

SRR 00 Y 0 I O

and [wa] is written on data block KMAT and [Mww] is written on data
block MMAT.

The final pressure transformation matrix 1s created by expanding the j

size matrix to y size and then removing free surface points.

If no SPC's exist on the fluid,
6,1 = e,]
yw jw

otherwise merge zeros in,

G
5] - oy

4-32

finally partition out the free surface

Gfrw
(.1 = o

v iw

[Giw] is then written on data block GIA.

Subroutine Name: GFSM@#D

Entry Point: GFSM@D

Purpose: To assemble the fluid matrices using the modal formulation

method.

Calling Sequence: CALL GFSM@D

Method:

1.

A dummy uset vector, USETD, is created which contains the following

bit positions:

Up - modal point, UA + UNZ

Uy - desired modal point (based on LM@DES parameter)
Ung - modal point to be skipped

Ugr —- free surface point

Up = Ug + Ug
Files PHIX and USETF and parameter LMPDES are used to set these bits.

The desired modes are partitioned from the PHIX matrix using the
USETD vector.

[PHIX] => [@)

19)
xE 1 "xnk
The area matrix is then transf-rmed.

a1 = 16,704]
gy xg xy

If the free surface points exist, they are merged in using subroutine
GFSMRG.

4-33

o

R

Ary
i B [Ahy]

fry

5. 1If SPC points exist on the fluid they are partitioned out from the

area and fluid stiffness matrix.
[Ahy] [Ahjf Ans]
and this matrix is transposed using subroutine GFSTRN.

T
A1 = (4]

'
K., |K
K] = _12’-15
Yy K

si i ss

6. If no SPC points exist on the fluid, the first fluid point is reduced

out to remove potential singularities.

The [H] matrix is then generated using subroutine GFSM. (N(y—l) by

Ny transformation)

T
(A = (A

The compressibility matrix which contains the spring is generated to

restrict volume change.

{Ac} (Ahy]{r}

[K.]

. KCOMP {Ac}lACJ

4-34

7. The pressure transform matrix is then found by solving the following

equation:

i

(K

MICREEI

3]
Matrix utilities FACTPR and SSG3A are used to perform this
solution.

8. The generalized stiffness aud mass terms are th-: extracted from

the LAMA data block to form the diagonal modal mass and stiffness

matrices.
B 7
%
(Kegl = -
KN
L J
M1
M
n
L d

9. If free surface points exist, the modal mass matrix is expanded and

the final mass matrix is formed.

“22pl | = [ﬁhh] (h = modes + free surface) f

M) = (Fy) + [ay1706,,]

and [Mhh] is written on data block MMAT.

10. If gravtiy exists, the additional stiffness is transformed and added in.

[PHIA] = (8,0 ¢, .]

= - T
[kEE] [KEE] + [¢a€] [DKaallﬁaE]

4-35

11.

12,

13.

otherwise

(Regd = [Kgp)

The free surface stiffness is then merged in 1if it exists.

The final stiffness matrix is then ccmpuced by adding in the
compressibility term if it exists.

If no SPC's existed un the fluid

(Kl = (K 1+ I[K]
otherwise

) = K]
and [Khh] is written on data block KMAT.

The final pressure transformation matrix is created by expanding

the j size to h and then removing the free surface points.

If no SPC's exist on the fluid,
(6,1 = e,]
yh jh

otherwise zeros are merged in.

(6]

[Cih] is written on data block GIA.
4-36

wy

Subroutine Name: GFSSPC

Entry Point: CFSSPC (in GFSUTL)

Purpose: To calculate a partitioning vector to remove the first row

and columns of the fluid stiffness matrix if no SPC's are provided.
Calling Sequence: CALL GFSSPC(NUY,PVEC)

NUY - Size of fluid stiffness matrix

PVEC - Gino file number of particioning vector

Subroutine Name: GFSC@M

Eatry Point: GFSC¥M (in GFSUTL)

Purpose: To compute the fluil comprassibility matrix fo:- the _ase
where no SPC's exist on the fluid. This matrix contains the spring
factors that couple the free surface and the structure points to resist

volume changes.
Calling Sequence: CALL GFSCPM(AWY,NUY,KC,1DENT,AC,SCR)

AWY ~ Gino file number of .he AWY matrix, direct formulation, or
AMY matrix, modal formulation
NUY - Size of fluid matrices

KC - Gino fiie number of the compressibility matrix to be
calculated

IDENT ~ Gino file number of a scratch file

AC - Gino file number of a scratch file

SCR - Gino file number of a scratch file

Method: See Step 4 under subroutine GFSDIR for the calculations used

to generate KC.
Subroutine Name: GFSH

Entry Point: GFSH (in GFSUTL)

Purpose: To calculate the H transformation matrix uced when the first

row and column of the fluid stiffness matrix is removed.

Calling Sequence: CALL GFSH(NUY,H)

137

NUY ~ Size of fluid stiffness matrix

H -~ Gino file number for H matrix
Method: See Step 4 under subroutine GFSDIR for the calculations used
to generate H.

Subroutine Name: GFSHC

Entry Point: GFSHC (in GFSUTL)

Purpose: To generate the constraint transformation matrix for the pure
incompressible calculations when requested by the user. These constraiuts

will restrict any vclume changes by the fluid.

Calling Sequence: CALL GFSHC(AWY,NUY,HC,IDENT,AC,MROW)

AWY - Gino file number of the AWY matrix

NUY -~ Size of fluid stiffness matrix

HC ~ Gino file number of the HC matrix

IDENT ~ Gino file number of a scratch matrix

AC - Gino file number of a scratch matrix

MRGW - Row number of the largest term in the calculated AC matrix

Method: See Step 4 under subroutine GFSDIR for the calculations used to

generate HC,
Subroutine Name: GFSMT

Entry Point: GFSMT (in GFSUTL)

Purpose: To add a 1.0 value to the null row and column of the fluid
structure mass matrix to prevent singularities. The routine is only used

when the incompressible calculations are requested.
Calling Sequence: CALL GFSMT (MT,MMAT,MR@W)

MI' - Gino file number of the input mass matrix
MMAT - Gino file number of the final mass matrix
MR@W - Null row and column number. OQutput from subroutine GFSHC.

Method: Subroutine CPYSTR is used to copy each column up to column MRAW
from matrix MT to MMAT. A 1.0 is then packed in matrix MMAT in row
position MRAW using suoroutine ZBLPKI. The remainder of matrix MT is
then copied to MMAT usine subroutine CPYFIL.

4-38

. RS L PP Y
-

Subroutine Name: GFSPTN

Entry Point: GFSPIN

Purpose: General purpose partition routine to perform the following

partition:

|
All} A12
[A] =Y .__..+__._
A21 ! A22

1

Calling Sequence: CALL GFSPTN(A,A11,A21,A12,A22 ,RPART,CPARY)

A ~ Gino file number of matrix to be partitioned

All

:ii - Gino file numbers of output matrices. Any of thece may be

AZE zervo if that partition is not desired.

RPART - A partitioning vector whose length is the size of a row in
A. It is used to partition the columns of A and may be zero
if Al2 and A22 do not exist.

CPART - A partitioning vector whose length is the size of a column in

A. It is used to partition the rows of A and may be zero if

A2l and A22 do not exist.

Method: The input arguments are used to initialize common block /PARMEG/

and subroutine PARTN is called to perform the actual partition operation.

Subroutine Name: GFSMRG

Entry Point: GFSMRG

Purpose: General purpose merge routine to perform the following merge:

A21 1 A22

Calling Sequence: CALL GFSMRG(A,Al1,A21,A12,A22,RPART,CPART)

Argument values are the same as those discussed under subroutine

GFSPIN.

4-139

Bl

Method: The input parameters are used to initialize common block /PARMEG/

and subroutine MERGE is called t -erform the actual merge operation.
Subroutine Name: GFSTRN

Entry Point: GFSTRN
Purpose: To transpose a matrix.

Calling Sequence: CALL GFSTRN(A,AT,I,SCR)

A -~ Gino file number of matrix to be transposed
(AT - Gino file number of the transpose

I - Gino file number of a scratch file

SCR - Gino file number of a scratch file

Method: Subroutine SSG2B is used to find the transpose by solving the

following equation:
T
[AT] = [A]'[1]

where I is an identity matrix.
This procedure is more efficient at finding the transpose then subroutine
TRANP1 when matrix A is sparse.

Subroutine Name: GFSWCH

Entry Point: GFSWCH
Purpose: To switch the units on which two files reside.
Calling Sequence: CALL GFSWCH(FILE1l,FILE2)

FILEL

FILE2 Gino file numbers of files to be switched.

Method: The switch is performed by updating the FIST and FIAT to point
to the new files, A check is made to ensure that any stacked data blocks

in the FIAT are also changed to reflect the switch.

Diagnostic Messages

A number of messages produced by the matrix utilities can be issued by

this module.

b=40

4.4 UTILITY MODULE 'TRAILER’

Name: TRAILER

Purpose

To examine or modify the trailer of a GIN@ data block.

DMAP Calling Sequence

TRAILER A//C,N,opt/C,N,word/5,N,alue $

Input Data Blocks

A - Data block for which the trailer is desired

Qutput Data Blocks: None

Parameters
1. opt is a BCD operation code from the list below. (input, no default)

RETURN -~ The value of the specified trailer word is to be returned

STPRE - The value of the specified trailer word is to be changed

2. word is an integer value which specifies the particular trailer word
to be operated on. The value of this parameter must be 1 £ word 2 6.

(input, no default)

3. wvalue is an integer parameter which will contain the value of specified

trailer word, opt =RETURN, or contains the value to be stored in the

trailer, opt = STPRE. If specified, the range must be 0 < value < 65535,

(input, no default)

Remarks
1. For matrix data blocks, the trailer positions contain:

WORD 1 - Number of columns
WORD 2 - Number of rows
WORD 3 - Matrix form

WORD 4

Type of matrix elements
WORD 5 - Maximum number of non-zero words in any one column

WORD 6

Matrix density x 104

4=41

A <t A

-
T

2. If the data block is purged, the parameter value will be returned

negative.
Examples
TRAILER M1//C,Y,RETURN/C,Y,1/V,Y,COL $
SAVE coL $

TRAILER M2//C,Y,STPRE/C,Y,3/C,Y,1 $

=42

B . P

4.5 DMAP EXECUTIVE OPERATION MODULE C@MPON

Name: C@ND@N (compilation on)

Purpose
To allow blocks of DMAP statements to be compiled or skipped depending

on bulk data paraueter value.

DMAP Calling Sequence

COMPPN n,param $
COMPPN c,param $

where:

1. n is a BCD name of a label which specifies the end of the DMAP

statement block.

2. c¢ is an integer constant which specifies the number of DMAP statements
in the block.

3. param is the name of parameter that appears on a PARAM bulk data card.

Example

COMPPN END,P1 $
M@DULEL A/B/V,Y,PN $

M@DULEN A/B/V,Y,PN $
LABEL END $

CoMPPN 2,P1 §
M@DULE1 A/B/V,Y,PN $
M@DULE2 A/B/V,Y,PN $

Remarks

1. The block of DMAP statements specified by the label or count is
skipped if the value of parameter is false (param > 0). If the
parameter value is true (param < 0), the block of DMAP statements

will be compiled.

2. If no PARAM bulk data card is provided, a value of false is assumed.

4-43

L LI

If the form of CPMPAN specifying a label is used, the label may not
be specified by any other DMAP instructions including other C@MPPN or
COHMPPFF instructions.

Comment cards are not included in the statement count.

COMPPN and CPMPAFF instructions may be nested up to five levels using
the same rules as for a FORTRAN D@ loop.

b4k

4.6 DMAP EXECUTIVE OPERATION MODULE CPMPQFF

Name: C@MP@PFF (compilation off)

Purpose

To allow blocks of DMAP st. tements to be compiled or skipped depending

on a bulk data parameter value.

DMAP Calling Sequence

CAMPPFF n,param $
COMPPFF c,param $

where:

1. n is a BCD name of a label which specifies the end of the DMAP

statement block.

2. c¢ is an integer constant which specifies the number of DMAP

statements in the block.

3. param is the name of parameter that appears on a PARAM bulk data

card.

Example

COMPPFF END,P1 $
MPDULEl A/B/V,Y,PN $

M@DULEN A/B/V,Y,PN §
LABEL END $

COMPPFF 2,P1 §
M@DULEL A/B/V,Y,PN $
M#DULE2 A/B/V,Y,PN $

Remarks

1. The block of DMAP statements specified by the label or count is
skipped if the value of the parameter is true (param < 0). If the
parameter value is false (param > 0), the block of DMAP statements
will be compiled.

4-45

If no PARAM bulk data card is provided, a value of false is assumed.

If the form of COMPAFF specifying a label is used, the label may not
be specified by any other DMAP instructions including other CAMP@N
or CYMPPFF instructions.

Comment cards are not included in the statement count.

COMPPN and CPMPPFF instructions may be nested up to five levels
using the same rules as for a FPRTRAN D@ loop.

b-46

R T e

4,7 MODIFICATIONS TO EXISTING NASTRAN SUBROUTINES

Changes to the standard Level 16 were required to perform the following

operations:

1.

The three-dimensional fluid elements are connected to special fluid
grid points with one degree of freedom. Implementing these elements
required changes to the IFP, GPl, TAl, PLOT, and EMG modules. The
fluid material definition required changes to the PREMAT utility

subroutine.

Generating plots of the free surface displacements required changes
to the SDR2 module to convert scalar displacements to vectors normal

to the free su.face.

The two-step eigenvalue processing in the modal formulation required
changes to the CASE module to process separate subcases for eigenvalue

methods.

The 'GIVENS' option for eigenvalue extraction in the READ module was
modified to provide more efficient processing and to correct for
existing errors. Specifically, the double precision operations were
corrected to provide consistent calculations and the 'spill logic'
in the tridiagonalizaition procedure was completely recoded to

eliminate unnecessary core transfers and 1/0 operations.

4-47

4

3 oeba B

FUNCTIONAL MODULE CASE (SIMPLIFY CASE CONTROL)

r;.SS FUNCTIONAL MODULE CASE (SIMP.IFY CASE COMTROL)

4.56.1 Entry Point: CASE

4.56.2 Purpose

To remove loopin3 considerations from later dynamics modules.

CASE CASECC,PSDL/CASEXX/C,N,APPRGACH/V ,N,REPEAT/V,N,LOPP §

4.56.4 Input Data Blocks

4.56.3 DMAP Calling Seguence "
¥

CASECC - Case Control Data Table,
PSOL - Power Spectral Density List.

Note: PSDL is used only if APPRPACH = FREQRESP and Random Analysis is selected in CASECC.

4,56.5 Qutput Data Blocks

CASEXX - Case Control data table for dynemics problems.

\

Note: CFASEXX cannot be pur

4.56.6 Parameters

APPRPACH - Input-BCD-no default. Defines the approach to be used for looping

criteria.

BCD Yalue LopP

STATICS NONE

REIGEN “HNE- EAGENVALLE EXTRACTION METHAD

0S0 NANE

DS1 NONE

FREGQRES? DIRECT INPUT MATRICES OR TRANSFER FUNCTIQNS

TRANRESP LZADS

BLKD NONE

3LX1 NZNE

CEIGEN DIRECT INPUT MATRICES OR TRANSFER FUNCTLONS
4.56-1 (

s

PR

z MQOULE FUNCTIONAL DZSCRIPTIONS

8CD value LgoP
; PLA NONE

REPEAT - Input and output-integer-set equal to zero outside of the DMAP loo. hy tha PARAM
module, -1 §f ro additi~aal loops; + loop court if loops.
LogP - Output-integer-default = -1. -1 if this is not a Jooping problem, 0 if this

is a looping problem.
(4.56.7 Method
The method of operaticn depends upon the input parameter APPROACH.

4.56.7.1 Transient Response

IE APPRPACH = TRANRESP, CASECC is skipped over REPEAT records. If REPEAT = Q, REPEAT is set
to 1. One record of CASECC is read and copied onto CASEXX. An attempt is made to read another
record. If no nore records exist, REPTAT is set to -1. Also, if this is tha first entry to CASE
(i.e., REPEAT = 1), LPOP is set to -1, If additional records exist, REPEAT and LJJP are set to 1.

4.56.7.2 Complex Eigenvalue Analysis

If APPRPACH = CEIGEN, REFEAT records are skipped in CASECC. If REPEAT = 0, REPEAT is set to
1. One record of CASECC is read and copied onto CASEXX. The names of the Direct Input lHatrices
and Transfer Functions sets are saved, An attempt is made to read another record. If no
rmore exist, REPEAT is set to -1. Also if this is the first entry (i.e., REPEAT = 1) LP2P is set
to -1, If additional records exist, their Direct Input Matrices and Transfer Functions sets are
compared to those saved. If they all agree, this record is copied onto CASEXX and the process

is repeated. If they do not agrae, REPEAT is incremented by 1, L@2P is set to 1, and CASE retumns.

4,55.7.3 Frequency Response

If APPPQACH = FREQRESP, the rmethod used is tne same as Complex Eigenvalue Analysis except a
it test is also made for frequency set selaction changes. In addition, if RANDPS cards are selected,
' the selected set is read from PSOL and the unique subcase "id's" referenced are stored. Each sub-

case id copied onto CASEXX is compared to this list, and the entry is marked as found. If at the

corpletion of CASE unmarked entries exist, the routine terminates with message 3033.

. 4.507.4- Real Eigcrwa\ues
' IS RPPROACH: RETGEN, the same method is used excest +Hhe HETHED 1D

| 4.56-2.(

R,

.

Y -

STRUCTURAL ELEMENT DESCRIPTIONS

The "stress" data recovery for heat transfer analysis is performed by subroutines SNHTF1,
SDHTFF, and SDHTF2 of module SDR2. In Phase 1, the matrix K and the matrix C are calculated
where K is the 3 x 3 material matrix and Ce is a 3 by number of points matrix. For the

tetrahedron:

Hpn Haz M3 Hy
[Cel = |Hy Hyp Hzz My
Hoy Map M3 My
For the WEDGE, HEXA1, and HEXA2 elements, the [C] matrix is calcuiated for each subelement.
The column corresponding to each point of the tetrahedron is added to the column of the Ce ratrix

corresponding to that point in the whole element. The results are divided by the number of

subelements.
In Phase 2, the temperaturs gradient vector and flux vector are calculated with the equations:

{aT} = [C] {u}
{q} = -[K]{aT},

where {u} is the vectcr of temperatures of the connected points.

8.17.3 Hydroelastic Calculations for Solid Elements

The "stiffness" matrix for hydroelastic problems is generated for the FHIX1,
FHEX2, FTETRA, and FWEDGE elements (which are identical in format to the solid
structure equivalents). The matrix is identical to the heat transfer matrix

except

Key = Kyy = K, = 1/p

Ky = Ky = K, = 0

The density, p, is obtained from the MAT subroutine with INFLAG=9.

8.17-10 (3f++

e I S A

et e i o v

-

baiise, "

TEMP

PLAARG -

SINTH

CASTH

COMMPN/MATRUT/

UTILITY SUBROUTINE DESCRIPTIONS

INFLAG = 8 -- INFLAG = 8 {s uswd oniy by two-dimensioral element subroutines
in modules PLA3 and PLA4. The fourth word of /Mi:IN/, PLAARG (see below), is
stress (c) and is used as the ordinate in an “nverse interpnlation table look-

up to obtain the abscissa which is strain (c).

If eithes: a) the ordinate is in the range of the piecewise 1inear functinn
defined by the table on a TABLES bulk data card, or b) the o-dinate is greater
than the maximum (which is also the last) ordinate in the table but the slope

of the line segment joining the last two points oi the table is nonzero, then
the second word of /MATPUT/ is set to zero and the abscissa, obtained by inverse
1inear interpolation or extrapolation, {s stored in the first word of /MATQUT/.
If either: ;) the ordinate is less than the minimum (which is also the first)
ordinate in the table, or b) the ordinate {s greater than the maximum ordinate
in the table and the slope of the line segment joining the last two points of
the table is zero, then the integer "1" {s stored in the second word of /MAfﬁUT/
(and the first word of /MATQUT/ is set to zero). Only MATI card; are searched
to match the input MATID.

Average elemen* tempsrature. Used as the independent variable in a table Jonk-
up when it is determined that a material property is temperature dependent.
Not used when INFLAG = 5 or 6.

Element strain. Used as the independent variable in a table look-up when E,

the modulus of elasticity, is defined as the first derivative of a strain-stress
curve. Used only in the Piecewise Linear Analysis Rigid Format and only by
modules PLA3 and PLA4.

Sine of the material property orientatinn angie. Used only when INFLAG = 2

and the MATID is found among the MAT2 cards. Used to construct the [U] matrix
referenced above.

tosine of the material property orientation angle. The corments on SINTH,
sbove, also apply here.

(output Common Block). Length 20 words. Depending upon the values of INFLAG,

the output cormon block is defined variously as tullows:
INFLAG =9 -- Ts used by hydroelagtic. 9-D Nud elements.

The value &5 density () 15 rebuened in /HATHUT /. I
3.4-59 (34

EX|

UTILITY SUCROUTINE DESCRIPTIONS ;

8. Strain Functional Value (INFLAG = 8)

Word Symbo’ Definition
1 PLAANS Value of strain (e) as an inverse function

of stress {c)

= 0 if the input stress is in the range of
the function

2 ICELL2 = 1 if the input stress is outside the range {
of the function %
i

3-26 Undefined

3.4.30.4 Method

and MATF
1. FREMAT: A1l the MATI, M'T2,ané MAT3AFards are read from the MPT data block into open

core so that each card is assigned 1 + 3*N words of core where N, a function of the card type, is

the number of material property data items on that card type. The first word is the material iden-

tification number and each material property is allocated 3 words: the first the input material
property; the sacond a table (function) number which gives this material property as a function of
temperature; the third a table number which gives this material proparty as a function of stress.
Initialiy words 2 and 3 are set to zero. Although the third word is currentiy used only for MATI
cards and for E, the modulus of elasticity, on that card, future development may make use of a
more gzneral application of stress dependent material properties. If ‘there aren temperature
dependent material properties for a non-Piecewise Linear Analysis problem, PREMAT is wrapped up

and a RETURN to the calling routine is executed.

For a non-Piecewise Linear Analysis problem for which a temperature set for material _roper-
ties was selected in the user's Case Control Deck, all MATT1, MATTZ and MATT3 cards are read into
open core from the MPT data block. For a Piecewise Linear Analysis problem MATS! cards are read
into open core from the MPT. A sorted list, with duplicates discarded, of the table numbers
referenced on these cards is constructed in open core. This table number list is constructed so
that every referenced table has eleven locations allocated to it. These eleven locations are used
as a dictionary for the tables. The contents are: the tzble number (word 1); the table type 1,2,3,
or 4 (word Z}; pointers to the first and last entries in the table (words 3 and 4); parameters
from the TABLE card (words 5 through 11). The DIT data block is then read. For each table read,
it is determined by scanning the table number list whether or not the table is required for prob-

lem solution. If it is required, the table is read into oper. core and the dictionary entry for

3.4-63 (3474

.- P A g

&

291
292
293
294
295
296

EXECUTIVE PREFACE MODULE IFP

Table 1(f).

B C D
CFFREE 8 GE@M2
CFLSTR 8 GEOM2
CFHEX1 8 GEOM:
CFHEX2 8 GE@M2
CFTETRA 8 GE@M2
CFWEDGE 8 GE@M2
MATF 3 GE@M2

Bulk Data Cards Processed by IFP.

O © O O O O O

BT o B o S

F G H

4 8 505

-4 9 -1

16 16 531

16 16 531

337

525

4 8 198
4.5-13b (

T N S T S

4404
4504
4604
4704
4804
4904
5004

—~

75
76
77
78
79
80
81

b~ W

»

FUNCTIONAL MODULE GP1 (GEOMETRY PROCESSOR -~ PHASF 1)

j ;E;—f_;!i;.T. ("Y" unit vector); (21)
{J} = l kT x vi ’ H
{i} = {3} x {k} , ("X* unit vé&tor). (22)

The orientation of the axes is defined by the matrix

Uond = [Towd 11, 32 Ky (23)

i3 I3 kg
5. On each pass of the CPRDij data at least one new system must be converted. Aftor

each pass the referenced GRID data is checked and converted. The resulting C@ROij data

will be the CSTM data block with each entry reduced from 16 to 14 words.
4.21.7.5 Construction of the BGPDT, the SIL and the Second Logical Record of the EQEXIN.

The BGPOT and the SIL data blocks are formed simultaneously. The SIL data block is s{mp?y
a list of the first scalar index for each grid or scalar point. The number of scalar indices (or
degrees of freedom) for each point is determined by examining the elements connected to each point.
The maximum number of degrees of freedom for each element type is listed in /GPTAl/. The maximum
degrees of freedom for each point is determined by reading data block GEZMZ2 and examining the

connection information in conjunction with the degree of freedom information in /GPTAl/.

The GPDT data are read a point at a time. The basic location coordinates of the point are.
formed using Equation 8 through Equation 14 and these data are written on the BGPDT file. The SIL

value for the next’point is calculated by incr -enting the last value by six (grid point) or by

one (scalar point). @(QONEQZ\QA"»D 0\3*\\,;(\ Q\ew\eﬁiﬁ FHE&\)F“E‘}\Q)FT ETRR o BWEDGE. |

A test is made on the value of the displacement coordinate system (field 6) in the GPDTu;gEE;) |
It

If this value is the integer, -1, the point is a special RINGFL, GRIDF, or GRIDS fluid point
is given one scalar index, the displacement coordinate system is basic (0), and its location

coordinates in the BGPDT data block are calculated like a normal grid point.

Finally the second logical record of EQEXIN is written. This record contains pairs of ex-

ternal numbers, 10*scalar index + type where type = 1 for a grid point, 2 for a scalar point.

4.21-7 (5343

o bt o W s 2%

PR N e e

T bt e

4.46.8.21 Subroutine Name: SDRZD

ar e s

MODULE FUNCTIONAL DESCRIPTIONS

opened, if not yet opened, and the next vector present is unpacked into core.

Data items are now asserbled for the identification record, and this identification
record is output to the output data block. Qutput line entries for the point-l1D’'s requestéd
are then written on the output data block forming a data record. At this time, if the user
requested magnitude/phase for complex outputs, the magnitude/phase computations are per-

formed on the real/imaginary pairs.

When all requests have been pracessed faor this vector, the next Case Control record
is read. If no more Case Control records exist and there are more vectors present, those

vectors are processed using the last Case Control record's specifications.

When all vectors have been processed for the current loop pass, the next pass may

be made for forces of single-point constraint or loads.

If deformed structure plots are requested, an output plot data block is formed during
the first loop pass, described above, containing translation components of the displacement

vector rotated tg basic coordinates. SQa\ar g\\i\é\ po'm‘\e» anc ‘\dﬁ\'\:\gie \05 a
value o -2 R the CLD. Sivdeoyees o freedom are agneraled Sor
pleffing S displacement.

1.. Entry Point: SDR2D
2. Purpose: To perform stage V as defined above, under "Method".
3. Calling Sequence: CALL SDR20D

4, Method: SDR2D performs the phase 2 stress and force reacovery computations. In this
phase actual stresses and forces are computed for the user-requested elements. These
stresses and forces are a function of the stress matrices computed in Stage III and the

displacements at the grid paints of the elements.

The operations of SDRZD are dependent upon the Rigid Format being executed. In all cases
the Case Control data block is opensd first. For eigenvalue prohlems a list of eigen-
values and mode numbers is read into core from LAMA and CLAMA. For Differential Stiffness
ar Buckling phase 1 problens, the first record of Case Control, which is used in phasa 0
of Buckling or Differential Stiffness, is skipped. For frequency or transient response

problems, & list of frequancies or times is read into core from PPF or PPT.

4.06-14 (34476}

¥ L

i

-t

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

MP GIND file number of the input matrix - integer - input.

MD, MR, M1, M2, M3, M4 GIi\@ file numbers of scratch files - integer - input.

RSTRT - '0' indicates no restart is being mada - integer - input.

N - Qrdar of the problem - integer - output.

LFREQ, HFREQ - Frequancy range for computation of eigenvectors - real - input,
@RDER - Eigenvalue sort order flag - integer - input.

LAMA, @EIGS, PHIA -~ GINg file name of the associated data blocks - integer - input.
NV - Number of eigenvectors to compute - integer - input.

NFPUND - Number of rigid body modes previously found - integer - input.
NVER - MNumber of fails to converge on eigenvectors - integer - output,
NEVER - Nurber of fails to converge on eigenvaluss - integer - cutput.
MAX - Maximum number of QR iterations allowed - integer - input.

ITER - Reason for terminaticn - integer - input.

z - Open core for VALVEC,

X1, X9, X18, YY, X8 are durmy varizbles and are not currently used.

4.48,8.30 Subroutine Name: SMLEIG

1. Entry Point: SMLEIG

2. Purpose: To compute tha eigenvalues for a 1 by 1 and 2 bv 2 matrix and the eigenvector

for a 1 by 1 matrix.

3. Calling Sequence: CALL SMLEIG (D,@,VAL)

D ~ Array of diagonal values - double precision - output.
1) - Array of off-diagonal values - double precision - output.

VAL - Array of eigenvalues - double precision - cutput.

4,48.8.31 Subroutine TRIDI

1. Entry Point: TRIOI

4.48-19a (12-1-59)

s b e

e s+ o P ey v e

o

FUNCTIONAL MODULE READ (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

2. Purpose: To tridiagonalize a symmetric matrix.

3. Calling Sequence: CALL TRIDI (D,¥,V,B,A,L#C,DA)

(=]
§

Diagonal terms of the tridiagonal matrix - double precision - output.

@ - Off-diagonal terms of the tridiagonal matrix - double precision -

output.

V - Scratch urray which contains another copy of the diagonal terms at

the conclusion of TRIDI - double precision - output.
A ~ Remainder of core - single precision - scratch.

B -~ Scratch array which contains the square of the off-diagonal terms - :

double precision - output.
DA - Remainder of core - double precision -~ scratch.

LAC - Remainder of core - integer - scratch.

4.48.8.32 Subroutine Name: SIC#X

1. Entry Point: SIC@X

2. Purpose: To initialize the arrays in SIC@D and SICAS. See section
4.48.8.33.

3. Calling Sequence: CALL SIC@X (SIN,C@S)
SIN - Array of sine rotation factors - double nrecision - input/output.

CAS - Array of cosine rotation factors - double precisfon - input/output.

4.48.8.33 Subroutine Name: SICHX

1. ECntry Point: SIC@D

2. Purpose: To compute the rotation factors for a given row in double

precision.
3. Calling Sequence: CALL SIC#D (R@W,D,R@T)
RGW -~ The number of the current row to rotate - integer - input.

RAT - If no ro*tations are required for this row, RAT = 0. Otherwise,

RAT = 1 - integer - input.

D - Array of terms for this row - double precision ~ input/output.

4.48-19b (

[
B

FUNCTIONAL MODULE REAC (REAL EIGENVALUE ANALYSIS - DISPLACEMENT)

4.48.8.34 Subroutine Name: SIC@X

1. Entry Point: SICHS

2. Purpose: To compute the rotation factors for a given row in single

precision.

3. Calling Sequence: CALL SIC@#S (R¢W,DS,RAT)

ROW - The number of the current row to rotate - integer - input.

DS - Array of terms for this row - single precision - input/output.

ROAT - If no rotations are required for this row, R@T =0. Otherwise,
RAT =1 - integer.

4.48.8.35 Subroutine Name: R@TAX

1. Entry Point: R@TAX

2. Purpose: To initialize the arrays in RPTATE. See section 4.48.8.35.
3. Calling Sequence: CALL RATAX (SIN,C@S)

SIN - Array of sine rotation factors - double precision - input.

C#S - Array of cosine rotation factors - double precision - input.

4.48.8.36 Subroutine Name: R@PTAX

1. Entry Point: R@TATD

2. Purpose: To rotate as much of the matrix as fits into core using

double precision arithmetic.

3. Calling Sequence: R@TATD (3,A,R@W,REW1,RPW2,LAC)

@ - Array of off-diagonal values - double precision - input/ocutput.

A - Partition of the matrix held in core - double precision - input/output.
RPW ~ The row number of current rotation row - integer - input.

R@WL - The row number of the first row of the matrix partition in core -

integer - input

RPW2 - The row number of the last row of the matrix partition in core -

integer - input.

4.48-19¢ (

o © e Ny masen Lt

ﬁ"l"‘:u. Cuw

L@C - For spill case a vector containing the open core location for each

row currently in core - integer - input.

4.48.8.37 Subroutine Name: R@TAX

1. Entry Point: R@TATS

2. Purpose: To rotate as much of the matrix as fits into core using

single precision arithmetic.
3. Calling Sequence: CALL RPTATS (@S,AS,RPW,R@W1,RPW2,LHAC)
#S - Array of off-diagonal values - single precision - input/output.

AS - Partition of the matrix held in core - single precision - input/
output.

RW - The row number of the current row - integer - input.

RAW1 - The row number of the first row of the matrix partition in core -

integer - input.

RAW2 - The row number of the last row of the matrix partition in core -

integer - output.

LPC - For spill case a vector containing the open core locations for

each row currently in core - integer - input. |

4.48.8.38 Subroutine QRITER

1. Entry Point: QRITER

2. Purpose: To obtain the eigenvalues of a tridiagonal matrix by the

~

Ortega - Kaiser QR iteration technique.

3. Calling Sequence: CALL QRITER (VAL,®,L@C,QR)

4.48-19d (i

B ety ge—

INTRODUCTION

This document is the Programmer's Manual for the MESHGEN mesh generation
program. It includes descriptions of all routines used by MESHGEN as well
as the data base and file operations. Additionally, a section on system
considerations points out areas of code that would require change for
implementation on other computer hardware.

1. MESHGEN ORGANIZATION

MESHGEN has been developed and organized in a modular manner. Such a design
allows both ease in debugging and simplicity of modification. The main
driver routine performs virtually no computation, but serves only as a
logical framework to guide execution. The overall logic of this routine

is shown in Figure 1 with annotations describing functions.

For the most part, all data is passed between major routines through common

blocks and, in some cases, by scratch files. This again enhances the
ability to expand and modify the system.

5-1

R
O

No

CALL CHECKR

CALL PREPAS

®

CALL LEXER *‘T—ﬂ CALL DATAEX

Boundaries
Only?

CALL FLSTR1

®

P

Process
Y
€8 FPUNCH CALL INIT Appropriate
Only?
Geometry
@ SHELL @ SPLID @ TFULL CAPS @ CAPB
CALL GETLIN CALL GETLIN CALL GETLIN CALL SHLCAP CALL SHLCAP
CALL GRDCEN CALL GRDGEN CALL GRDGEN CALL S@LCAP
CALL QEL@UT CALL SEL@UT GFLUID CALL GRDGEN CALL FLSTRL
CALL STRNGR CALL SEL@UT
CALL GETLIN CALL SEL@UT @ CAPF
CALL GENS@L CALL FLSTR1
CALL SELQUT CALL S@LCAP
Yes
CALL PL@T and/or CALL PL@T2 @
No L\\\\\No
PUNCH?
Yes
i

CALL PNCHER

FIGURE 1. OVERALL FLOW OF MESHGEN

O ® © 6O OV OO 6 ©

o

FICURE 1. OVERALL FLOW OF MESHGEN, Cont'd

Description of Functions

PREPAS and DATAEX are used to prepare the input MESHLAN
sequence for processing.

LEXER performs the lexical analysis of the MESHLAN sequence
and builds much of the data base.

CHECKR performs consistency checks on the input data.

This test allows the option of generating a fluid and
structure portion of the same mcdel at differcont times.
Both models may then be accessed from the SAVE file and
fluid/structure interfaces defined.

FLSTR1 generates the fluid/structure interface data.
Sequence of subroutines required to generate SHELL models.
GETLIN and GRDGEN generate grids, QELOUT elements, and
STRNGR stringers.

For the S@LID model, SELYUT generates elements.

A general fluid (GFLUID) is defined by GENSPL and the
associated elements are again fcund by SEL@UT.

TFULL (a combined SHELL and SPLID model) is simply the combi-
nation of the two portions, plus a call to FLSTRi to generate
fluid/struct:ure boundaries.

SHLCAP defines both the grid and element data for a shell
cap.

SPLCAP performs grid and element definitions for a solid cap.

A snell cap containing fluid may be modeled with this routine.

Two plot routines are available. PL@T generates three-
dimensional plots, while PL@T2 generates two-dimensional
pseudo-developed plots for some models.

Detailed descriptions of these routines and
their associated utilities are described in
subsequent sections.

P IORVE VES

oy .
ks,

2. FILES AND COMMON BLOCKS

2.1 FPRTRAN FILE DESCRIPTION

MESHGEN requires the use of six FPRTRAN files in addition to standard I@ units
5, 6 and 7. The file numbers are found in

COMMPN/SYS2/1IUL,1U2,1U3,1U04,1IU5,1U6

These values are set by Block Data MESHBD and may be changed if desired.
Operations on each of these files are described below.

File Usage

IUl Internal file used to store data passed to plot routines

102 Copy of input stream with MESHLAN data deleted

1U3 SAVE file for models (usually catalogued by user)

104 Scratch file used in computing fluid/structure interface

iu5 Available for defining external plot file for SC4020 plotter
hardware

U6 Copy of input stream after conversion to BCD

The actual formats of the data on each of these files is summarized below.

2.1.1 File IUl

Record Contents
1 ITYPE - tyne of model: 1 = shell, 2 = solid
NAME -~ 2-word BCD M@DEL name
NR - number of radial stations
2 NT -~ number of circumferential stations
NZ - number of axial stations
ICLPSR - flag signifying radial closure
ICL@ST - flag signifying circumferential closure
3 NFLAG
ANG1,ANG2 - plot view angles
DGUT
4 thrun GID - grid point ID

R,T,Z - grid coordinates (cylindrical)

5-4

- &

2.1.2 Files IU2 -ad IU6

The files are siuply copies of the input stream, BCD, 80 characters per

record.

2.1.3 File IU3

Record

1

2 thru n

Contents

NAME -~ 2-word BCD M@DEL name

Bulk Data images - 80 characters per record

In addition, the boundary element dimensions are saved to find boundaries
at a later time. The format of

Word

Contents

BCD String '**#k’
Element ID

ZMIN and ZMAX for
TMIN and TMAX for

2.1.4 File IU4

This file is used internally to
i.e., SHAPE=TFULL or CAPE. Its

2.1.5 File IUS

such records is:

element

element

find the boundaries when all data is present,
format is the same as that described above.

The format of this file is determined by the SC4020 plot routines.

2.2 COMMON BLOCKS

2.2.1 COMMON/CONTRL/MPDNAM(2) ,SHAPE,BPUND (3) ,NEW

M@DNAM - Array containing data from MPDEL command

SHAPE

1,2 M@DEL name, BCD

3 SAVE flag - 0
1

110 SAVE

SAVE

Type of geometric shape being analyzed from SHAPE command

= 1 for S.ELL
= 2 for SPLID
= 3 for YRUNCATED S@LID
= 4 for CONTAINED S@LID
= 5 for CAPSHELL
= 6 for CAPS@LID
= 7 for CAPRATH
5-5
- . e I e .

. BAUND - Array storing boundary data from B@UNDARY command

2 -

1 - Type of boundary specification = -1 for INTERPPLATED TABLE

= 0 for FUNCTI@N
=] for TABLE

Boundary ID, integer

\ 3 - Fluid level for SHAPE=4 or 7

NEW - Flag to define statug of SAVE file. Set to 1 if file s new.

2.2.2 COMM@N/ELTAB/ELEM(10,8)

ELEM - Array holding element definition for ip to 10 different elements

per

1l -

7,8

case. Column values are:

Element type coda

types 1-8 are quad plates

types 9-12 are fluids

types 13-17 are triangular plates

Initial elemen: ID, integer

- Not used

Element property ID, integer
Material orientation angle, a, rcal

- Used to denote THICKNESS VARIES command

2.2.3 COMM@N/MLINE/NRL,NTL,NZL,R/200,9),7{200,9),2(200,0)

This common block is need to store mesh line data generated by expanding
and merging the zone definiti-an data in /MESH/.

NRL,NTL,NZL - Number of mesh lines in each coordinate direction, integer

R,T,Z - Arrays holding expanded mesh line values. Each column ol the
array holds:

1l -

[
!

’7’

3
4
5 -
6
9

Expanded coordinate valiues, real

Expanded coordinate grid ID for steil integer
Input coordinate system ID for shell inreger
Output coordinate system ID for shell integer
Not used

8 - Same as 2,3,4 for the solid

Not usec

2.2.4 C@MM@N/MESH/G1,C2,PPR@P,X1(5,20),X2(5,20),X3(5,20) ,NPT(3),STRING(6),

SLPC(2,25)
Gl - Initial gri< ID for shell, integer
G2 - Initial grid ID for solid, integer

s

5- 6

R s 2 Py -

APRAY

- Qverall property 1D, integer.

Xi,X2,X3 - Arrays storing zone definition values for each coordinate
direction. The first subscript refers to the number of the
STEP or DIVIDE command in the ith direction, i.e., a maximum
of 5 STEP or DIVIDE's may appear in each direction. The
words within each entry are:

NPT (1)

STRING

SL@C

1.
2.
3.

10.

11.
1.

First value of coordinate on STEP command, real.
Second value of coordinate on STEP command, real.

Number of elements in the zone from STEP or DIVIDE
command, integer.

Shell flag - set to 1 if plate elements are defined for
the zone, integer.

Input coordinate system ID for the shell zone, INSYS,
integer.

Output coordinate system ID for the shell zone, @UTSYS,
integer.

Grid point ID increment for shell zone from NUMBER command,
integer.

Element ID increment for shell zone frem NUMBER command,
integer.

Pointer into ELEM array of /ELTAB/ defining the type of
elements in the shell zone, integer.

Number of element types defined in the shell zone,
integer.

Shell zone property ID from ZPR$P command, integer.

Mrterial orientation angle, o, for shell zone from ZPR@P
command, real.

13-19. Same as 4-10 for the solid zone.

20.

Solid zone property ID from the ZPRPP command, integer.

- N.mber of zones defined in each coordinate direction.

-1

6

Type of stringer, 0 for BAR, 1 for R@D.
Stringer property 1D, integer.
Initial stringer ID numbtzy if 6 direction, integer.

Number of stringer stataons in Z direction from AL@NG
command, integer.

Number of stringer stations in 6 direction from AL@NG
command, iateger.

Initial stringer ID number if Z direction, integer.

- Array containing stringer stations from AL@PNG command in the Z
and 6 directions.

3. UTILITY SUBROUTINES

3.1 MAPFNS (MACHINE WORD FUNCTIONS)

3.1.1 Entry Points: LSHIFT, RSHIFT, ANDF, PRF, X@RF, C@MPLF

3.1.2 Purpose
To perform basic computer word manipulations by standard binary digit {(bit)

operations. The manipulations are performed over the complete memory word
length for the particular hardware.

3.1.3 Calling Seqpeﬁce

All machine word functions are executed as FPRTRAN integer function sub-
routines with integer arguments.

3.1.4 Method

The method employed within each function will be described following the
separate function examples.

3.1.5 Entries
K = LSHIFT (I,N)

The entire bit structure of word I is shifted left N places and the resulting
word replaces word K. Word I is unchanged. High-order bits shifted »ut are
lost. Zeros are supplied to vacated low-order positions. The shift is logical;
no special provision is made for the sign position.

K = RSHIFT (I,N)
The entire bit structure of word I is shifted right N places and the resulting
word replaces word K. Word I is unchanged. Low-order bits shifted out are
lost. Zeros are supplied to vacated high-order positions. The shift is logical;:
no special provision is made for the sign position.

K = ANDF (I,J)

A logical product of the bits within word I and word J is formed and sto.ed
into word K. Words I and J are unchanged.

A logical sum of the bits within word I and word J s formed and stored into
word K. Worc. I and J are unchanged.

5-8

© e A A o = *

K = X@RF (1,J)

The modulo~-two sum (exclusive or) of the bits within word I and word J is
formed and stored into word K. Words I and J are uachanged.

K

COMPLF (I)

The ones complement of the bits within word I is formed and stored into
word K. Word I is unchanged.

3.1.6 Design Requirements

NAPFNS is written in assembly language.

PP R P S e A

hu,

T L B

e

-
-

P =
oy ey

3.2 XRCARD (FREE-FIELD CARD DATA CONVERSION ROUTINE)
3.2.1 Encry Point: XRCARD

3.2.2 Purpose
To interpret free-field card input data as follows:

1. Identify BCD alpha and numeric data fie=lds as they are converted
and placed in the user's buffer.

[N
.

Flag and output special data field delimiters.

3. Convert ECD numeric fields to binary integer or binary floating
point.

4. Indicate when the data extends beyond ome 72 column card.

3.2.3 Calling Sequence

CALL XRCARD(@UTBUF,L,INBUF)

Where:
@UTBUF = The buffer which is to contain the converted card image.
L = The length of @UTBUF available to XRCARD.
INBUF = The buffer containing the card image to be converted.

3.2.4 Method

XRCARD's design is based on the necessity of having to function on a variety
of computing machines having a variety of computer word structures, and a

variety of differences in hollerith handling imposed by differing FPRTRAN
compilers.

XRCARD analyzes the twenty hollerith words input thro. ~» INBUF as follows:

Data Field Delimiters

Type A: The following symbols signify the end of an alpha field or numeric
field oa the card. As these symbols are erncountered, they will be

flagged and placed in the output buffer to aid the user in identify-
ins the data.

(LEFT PAREN
/ SLASH

= EQUAL

* ASTERISK

Type B: The following symbols are identical to those listed above except
that the symbol .s not flagged or placed in the output buffer:

5-10

w S 1 S e AP RANN AN e Y 1y il IO . A o~y e = e Sy
PELI w, - -

[

» COMMA
) RIGHT PAREN

PP

-

When successive type A or type B delimiters are encountered, a null
field indication (two BCD blank words) is output. A null field is
generated for each successive delimiter. A null field is also gener-
ated when a type A or type B delimiter is followed by a $ indicating
i the end of data condition.

Type C: The following symbol is identical to the COMMA except that no null
field jndication is output when they are encountered in succession.

BLANK

. End of Data Indication
There are three means by which end-of-data may be specified on the card:

® The last data field ends in column 72, or is followed by blanks out
through column 72;

° $ is encountered, after which comments may be included out to column
80; or

e Contipuation cards ending in (, /, = or , will result in a continuation
flag (0 mode word)).

Format of Output Data

A mode word, N, is placed in the output buffer to distinguish between BCD
data and numeric data.

Numeric Mode Word: A new mode word is output each time a numeric field
is converted and output. (All numeric mode words are negative.)

N

-1 irteger data (1 data word)
-2 floating point single precision (1 data word)
-4 floating point double precision (2 data words)

LA TR '}

N indicates the type of numeric data and where to look for the next mode
word.

Alpha Mode Word: When processing alpha data, only one mode word is output
for successive alpha fields, i.e., an alpha mode word will never follow
another alpha mode word.

N = The number of successive alpha fields encountered on the card.
Each alpha field consists of two 4-character computer words
(left adjusted). Thue, N can be used to compute the location
of the nex* mode word.

The type A delimiters are output as alpha data and are 'covered' by the
alpha mode word. Since data output in the alpha mode must consist of two
words, a type A delimiter will appear as:

Word 1 = Delimiter flag, all bits of the word are on.
Word 2 BCD delimiter, left adjusted, followed by BCD blanks.

5-11

. . 3
r;'):-r.’l -, B ~ Ay . D e

e iy ntmc s S

—

o e ek v i o < S
P LA .

W, R e R R

e R

End-of-Data: The end-of-data flag is placed last in the output buffer

and appears in place of an expected mode word. There ure two end-of-data
flags:

e A word with all bits off, indicating that more data is to follow
on a continuation card.

e A word will all bits on except for the sign, indicating that no
more data is to follow for this card type.

3.2.5 Design Requirements

An alpha field must be eight characters or less. Long alpha fields will be
truncated to eight characters.

All data must be placed in card columes 1-72.
A data field may not be split between two cards.

The specification of all numeric data fields must conform to FPRTRAN IV
standards.

. . " L - . - Bk N ol RPN S e
e e A R a

1

3.3 RE2AL (REAL NUMBER TO ALPHANUMERIC)

3.3.1 Entry Point: REZAL

3.3.2 Purpose

To convert a single precision number to its BCD string representation.

3.3.3 Calling Sequence

CALL RE2AL(RE,ALPH)
where:

RE - single precision real number - real - input.

ALPH - BCD output (2 words)

3.3.4 Method

The output value is the floating or exponential form depending on which gives
greater significant digits. Round off is based on the number of significant
digits being output.

5-13

e AmaAdy e S AT

T e ey,

-

—_ -
e
LA

R -

3.4 INT2AL
3.4.1 Entry Point: INT2AL

3.4.2 Purpose

To convert an integer value to its BCD string representation.

3.4.3 Calling Sequence

CALL INT2AL(NUMB,ALPH)
where:
NUMB - number to be converted to BCD string - integer - input
ALPH - two-word arr.y containing BCD string - BCD - output
3.4.4 nmethod
Each digit of NUMB is isolated and the BCD string is built by appropriate

shift and logical "OR" operations. If the integer value is greater than 8
digits, the string returned in ALPH is all "question marks" (?).

5-14

.- . 2 N C ¥

3.5 PAGE (PAGE HEADING)

3.5.1 Entry Point: PAGE

3.5.2 Purpose
To provide a standard page heac'ng for MESHGEN output.

3.5.3 Calling Sequence

CALL PAGE
COMMPN / SYSTEM/NLPP ,NLINE, IPAGE

NLPP - Maximum number of lines per page - integer.

NLINE - Number of data lines on previous page - LINE is set to
zero by PAGE.

IPAGE - Current page number - increased by 1 on each call to PAGE.

COMM@N/PUTPUT/NTITL(32) ,ITITL1(32),ITITL2(32),ITITL3(32)

3.5.4 Method

PAGE writes a standard 4 line heading from NTITL, ITITL1l, ITITL2, ITITL3.

3.6 MESAGE (MESSAGE WRITER)
3.6.1 Entry Point: MESAGE

3.6.2 Purpose

To queue norfatal messages during the execution of a module; and for fatal
messages give a core dump (CALL PDUMP), print the message queue (CALL MSGWRT),
and call PEXIT.

3.6.3 Calling Sequence

CALL MESAGE(IC@DE,L,M,N)
where:

ICODE - Internal message number - integer - input.

L,M,N ~ Values to be included in the error message — mixed - input.
3.6.4 Metbod
Both fatal and nonfatal error messages are printed as they occur. 1If a

fatal error occurs, the IERR flag is set and return is made to the calling
routine where appropriate action must be taken,

w

- 16

RN . e e Ao

ey
R A] »

3.7 BUG

3.7.1 Entry Point: BUG

3.7.2 Purpose

To allow for diagnostic output during program development.

3.7.3 Calling Sequence:

CALL BUG(IDENT,IDNUM,ARRAY,NWDS)
where:

IDENT - Four~character identifier to label output - BCD - input.

IDNUM - Number to identify output - integer - input.
ARRAY - Starting address of values to bte output - input.
NWDS - Number of words to be output - integer - input.
CPMMPN/DIAG/IDIAG

3.7.4 Method

If the diagnostic flag IDIAG is on, the routine will print the specified

data. The type of data and output formats are determined by the subroutine.

5- 17

e L

3.8 APRXEQ (APPROXIMATELY EQUAL FUNCTION)

3.8.1 Entry Point: APRXEQ

3.8.2 Purpose

To determine whether two single-precision real values are approximately
equal within a given tolerance.

3.8.3 calling Sequence

K = APRXEQ(A,B) [LOGICAL FUNCTION]

where:
A,B - Numbers to be compared for approximate equality - real - input.
COMMPN/SYS1/TPLER

where:

TPLER - Approximate equality tolerance - real.

3.8.4 Method
The following algorithm is used to determine approximate equality:

7f A=B; then APRXEQ=.TRUE.

else
if (A#OAIA;—B] <T@LER) V
(B#O/\|Ag§| <TPLER); then APRXEQ=.TRUE.

else

APRXEQ=.TRUE,

- &

o St
i T - L

s

3.9 DEC@DE (D@F DECODER)
3.9.1 Entry Point: DEC@DE

3.9.2 Purpose

To trangslate the normal NASTRAN degree-of~freedom code (string of integers 1l-6
with no imbedded blanks) to a bit representation.

3.9.3 Calling Sequence

K = DEC@DE(D@PF) (INTEGER FUNCTION)
where:

DPF — NASTRAN degree-of-freedom code ~ integer - input.

3.9.4 Method

The digits of DPF are isolated and then a word is constructed where the ith
bit is on if the digit i appears in D@F. For example:

DPF = 126; DEC@UDE = 100011

DPF = 123456; DECJDE = 111111

DPF = 256; DEC@DE = 110010

ke,

3.10 ENC@DE (D@F ENCODES)

3.310.1 Entry Point: INTEGER FUNCTI@N ENC@DE

3.10.2 Purpose

To translate a bit pattern to the NASTRAN degree-of-freedom code.

3.10.3 Calling Sequence

K = ENCPDE(DPF) (INTEGER FUNCTION)

where:

DPF - Bit string to be coded - integer - input.

3.10.4 Method:

Bits are extracted one at a time and thz DPF string is generated.

of this process are:

011011 ==> 1245
111111 => 123456
006011 => 12

This routine is the inverse of DEC@DE.

Examples

nr oy r

3.11 INTERP
3.11.1 Entry Point: INTERP

3.11.2 Purpose

To perform a linear interpolation on a tabular function r = f(z).

3.11.3 Calling Sequence

R = INTERP(Z) (RFAL FUNCTION)

where
Z - value of axial coordinate at which radial value is desired - real -
input.
COMMPN/BTAB/

3.11.4 Method

A linear interpolation is performed to find the radial value. An error

condition exists if Z < Z ., or Z > Z
min max

un

-21

3.12 GETVAL

3.12.1 Entry Point: GETVAL

3.12.2 Purpose

To return a value of radial coordinate for a given axial value.

3.12.3 Calling Sequence

R = GETVAL(Z) [Real Function]
where:
Z - axial value; inptt, real

CAHMMPN/CPNTRL/

3.12.4 Method

A test is made to determine whether the boundary has been specified by a
FUNCTION or a TABLE. The appropriate call is then made to either FUNC or
INTERP.

[

3.13 FUNC

3.13.1

3.12.2

Entry Point: FUNC

Purpose

Evaluates the incomplete quadratic function

2

a4z +a_.z + a rz + a,r

5 6

for r given a particular value of z.

- value of axial coordinate at whicl radial coordinate is desired;

3.12.3 Calling Segquence
R = FUNC(Z) (Real Function)
where:
Z
input, real.
C@MM@N/SHP/A(9)

A(I) - array containing quadratic coefficients; real.

3.13.4

Method

7

2
= a

8

+ a

9

The following algorithm is used to find the value of r:

If a
If a

= a, =0 then ERR@GR
6 7 2
7 = 0 then FUNC = (a8 + ag - a
_ 2 2
else DISC = a; - 4a6(a4z + ag

if DISC 0.0 then ERR@R

Rl = (—37 + /DISC)lza6
R2 = (—a7 - v‘DISC)/Za6
FUNC = max(R1,R2)

2
A

2
z-a,-a

8

asz)/a7

9)

TG

.\ L s *
b e el M

.

3.14 DIVLIN

3.14.1 Entry Point: DIVLIN

3.14.2 Purpose

To divide a boundary curve into n approximately equal segments.

3.14.3 Calling Sequence

CALL DIVLIN(NPT,ZP)
where:

NPT -~ the number of equally-spaced points - input - integer.

ZP - array of values at equally-spaced points (axial locations) -
output - real.

CPMMPN/BTAB/ COMMPN/ SHP

CO¥MAN/CONTRL/

3.14.4 Method

The SHAPE flag in the /CONTRL/ common block is checked to determine whether
the boundary is defined by a function or table. In either event the length
ot the curve is approximated by the summation of line segments defining the
curve. This length is then divided into NPT equal segments and interpolation
is performed to give the axial values of these points.

3.15 PIF1

3.15.1 Entry Point: PIFl

3.15.2 Purpose

To perform a linear interpolation of the curve length function.

3.15.3 Calling Sequence

CALL PIF1(Z,L,N.LP,ZP)
where:

- table of axial values - real - input.
L - table of arc length at each Z - real - input.

- number of points in tables - integer - input.

LP - particular value of length for which the axial value is
desired - real - input.

ZP - interpolated value of Z at LP - real - output

5- 25

PO

4. DATA GENERATION AND 1@ SUBROUTINES

4.1 FREQUT
4.1.1 Entry Point: FREGUT

4.1.2 Purpose

To generate fluid-free surface CFFREE Bulk Data cards.

4.1.3 Calling Sequence

CALL FREQUT (ID,IFACE)
where:

D — Fluid element ID number - integer - input.

IFACE - Face identification for free surface - integer - input.

COMMPN/LPADS/

4,1.4 Method

Subroutine INT2AL is called for each of the input values and the Bulk Data
card image is generated. The image is then written to the ocutput file., 1In
addition, if the SAVE or PUNCH flags are on, the .mage will be written to
the SAVE file and/or punched.

5- 26

Gt

R LI U

4.2 GRDQUT

4.2.1 Entry Point: GRDPUT

4.2,2 Purpose

To generate GRID Bulk Data cards.

4.2.3 Calling Sequence

CALL GRD@AUT(ID,IN,R,T.Z,QUT,SPC)

where:
ID - grid point ID number - input - integer.
IN -~ input coordinate system ID - input - integer.
R,T,Z -~ grid point coordinates - input - real.
@UT - output coordinate system ID - input -~ integer.
SPC - permanent single point constraint code - input - integer.

4.2.4 Method

Subroutine INT2AL is called for each input value and the Bulk Data card image
is generated. The value SPC must be encoded back to NASTRAN form. In addition,
if the PLYT flag is set., the grid ID and coordinates are written to the plot
file. If the SAVE or PUNCH flags are on, appropriate action is taken.

5-27

G e a e

T

MR
S VR

P N)

Prceaionsat B-vartink —.’
. v

PRSI
'

o

$oomin [v——-1 B -

1

4.3 HEXQUT

4.3.1 Entry Point: HEXAUT

4.3.2 Purpose

To generate CFHEX1 and CFHEX2 Bulk Data cards.

4.3.3 Calling Sequence

CALL HEX@UT(ITYPE,E,P,Gl,G2,G3,G4,G5,G6,G7,G8)

where:
ITYPE - flag to determine type of card - input - integer.
= 9 CFHEX1
= 10 CFHEX2
E ~ element ID number - input - integer.
P - property 1D number ~ input - integer.
G1-G8 - grid point ID number - input - integer.

4.3.4 Method

Subroutine INT2AL is called for each of the input values and the Bulk Data
card image is generated. The image is then written to the output file. 1In
addition, if the SAVE or PUNCH flags are on, the image will be written to the
SAVE file and/or punched.

4,4 PLOTEL
4.4.1 Entry Point: PL@TEL “;

4.4.2 Purpose

Generates PLPTEL Bulk Data cards for the free surface of a fluid model.

4.4.3 Calling Sequence

CALL PL@TEL(ID1,Gl,G2,ID2,G3,G4)
where:

1D1,ID2 - PLPTEL element ID numbers - input - integer.

61,62,:3,64 - grid point ID's defining the PLPTEL - input - integer.
4.4.4 Method
Subroutine INT2AL is called for each of the input values and the Bulk Data
card image is generated. The image is then written to the output file. 1In

addition, if the SAVE or PUNCH flags are on, the image will be written to
the SAVE file and/or punched.

P

4.5 PLTHED

4.5.1 Entry Point: PLTHED

4.5.2 Purpose

To write three header records on the scratch file used by the plotting
routines.

4.5.3 Calling Sequence

CALL PLTHED(ITYPE,IP@¥S)
where:

ITYPE - type of plot that will be generzted
= 1 for sliell
= 2 for solid

IPPS - code for positioning of file
= 1 rewind
= 2 no rewind

4.5.4 Method

Twelve words are written as three four-word header records to the plot file.
(See Section 2.1 for the format of this file.)

5- 30

R e

4.6 PNCHER

4.6.1 Entry Point: PNCHER

4.6.2 Purpose

To punch the Bulk Data for a model that resides on the SAVE file.

4.6.3 Calling Sequence

CALL PNCHER
COMPN/IGDATA/ JUNK(5) ,NAME (2)
where:

NAME - 2-word srray containing the model name on the SAVE file.

4,6.4 Method
The SAVE file is accessed and a search is made for model NAME. If NAME is

found, all Bulk Data images are punched. If NAME does not exist, the PUNCH
command is ignored.

5-31

4.7 STRQUT
4.7.1 Entry Point: STRAUT

; !‘ 4.7.2 Purpose
To generate CR@PD and CBAR Bulk Data cards.

B st §
N]

4.7.3 Calling Sequence

CALL STR@UT(IC,EID,PID,G1,G2)

PRGN

1 where:
i
: IC - code for element type - input - integer
= 1 for CBAR
= 2 for CR@D
EID - element ID number - input - integer
' PID - property ID number - input - integer
§ G1,G2 - grid point ID numbers - input - integer

4.7.4 Method

Subroutine INT2AL is called for each of the input values and the Bulk Data
card image is generated. The image is then written to the output file. 1In
addition, if the SAVE or PUNCH flags are on, the image will be written to
the SAVE file and/or punched.

o e e ——— 4

. R

—

4.8 TETQUT
4.8.1 Entry Point: TET@UT

4.8,2 Purpose

To generate CFTETRA Bulk Data cards.

4.8.3 Calling Sequence

CALL TETPUT(E,P,G1,G2,C3,G4)

where:
E - element ID numher - input - integer.
P - property Il number - . nut - integer.

Gl-G4 - grid point ID numbers - input ~ intege.,

4.8.4 Method

Subroutine INT2AL is called for esc¢: of the input values and the Bulk Data
card image is generate.. Thc image 1s then writter to the output file. In
addition, if the SAVE or PUNCH flags are on, the image will be written to
the SAVE file and/or punched.

5-33

et P — - A——

PO

4.9 WEDAUT

4.9.1 Entry Poiat: WED@UT

4.9.2 Purpose

To generate CFWEDGE Bulk Data cards.

4.9.3 Calling Sequen~e

CALL WEDQUT(E,P,G1,G2,G3,G4,¢5,G6)

where:
E - element ID number - input - integer.
P - propeity ~) number - input -~ integer.

G1-G6 - grid point ID numbers - input - integer.

4.9.4 Method

Subroutine INT2AL is called for each of the input values and the Bulk Data
card image is generated. The image is then written to the ou~put file. In
addition, if the SAVE or PUNCH flrgs sre on, the image will be written to
the SAVE file and/or punched.

4.10 WRTHED
4.10.1 Entry Point: WRTHED

4.10.2 Purpose

To write a header record on the SAVE file if the SAVE option is elected for
a given model.

4.10.3 Calling Sequence

CALI. WRTHED

C¢-L.PN/CONTRL/

o W TE
\‘t‘.‘\‘ N A

L

s %)
. .

et o

[,

[ey

4.11 CCARD
4.11.1 Entry Point: CCARD

4.11.2 Purpose

To generate the Bulk Data card continuation field.

4.11.3 Calling Sequence

CALL CCARD(NUM,@UT,PREFIX)

where:
NUM ~ numeric portion of continuation field - input - integer.
ouT - 2-word array containing continuation field - output - BCD.

PREFIX - 2-character prefix for continuation field - input - BCD.

4.11.4 Method

Logical shifting and bitwise logical "OR" functions are performed to pack
the prefix onto the BCD representation of NUM.

5- 36

PRSP

v

4.12 PREPAS g
4.12.1 Entry Point: PREPAS H

4.12.2 Purpose

To convert the input data stream from EBCDIC to BCD.

4.12.3 (Calling Sequence

CALL PREPAS b

4.12.4 Method

PREPAS performs a character-by-character conversion of the input stream and 3
writes the input to unit IU6. [

4.12.5 Design Requirements

PREPAS is an IBM-dependent routine and must be altered to simply copy the
input data on other systems.

2 sn
. e e L g AT S ANANRCS S

e
e

PUVEDNY

& oot et
v -

3
a,

A}

4.13 DATAEX

4.13.1 Entry Point: DATAEX
4.13.2 Purpose

To extract the MESHGEN functional data from the input stream in a pre-pass
operation before mesh generation.

4.13.3 Calling Sequence

CALL DATAEX

COMMPN/BPUND/
4.13.4 Method

The input file is read until the $DATA card is encountered. Each FUNCTI¢N
or TABLE definition is extracted and loaded into /BPUND/. When a hardware
end-of-data is sensed on the input unit, a REWIND is performed and the

MESHLAN sequence is copied to a scratch unit and all cards after and including
$DATA are eliminated.

5-38

e ————— 3 v

PR

emm .

[N
’ [

[RP———

4.14 INIT
4.14.1 Encry Point: INIT

4.14.2 Purpose

To extract the boundary function or table data four the current case from the
tables of all data input for the current job.

4.14.3 Calling Segquence

CALL INIT

CEMMPN/BAUND/FT(10,10) ,TT(500)
COMMPN/SHP/A(9)
C@. MPN/BTAB/NPT, TABL(500)

/BPUND/ contains tables of all input functions and boundary tables
/SHP/ current function data
/BTAB/ current table data

4.14.4 Method

This routine extracts the current boundary data from the tables FT and TT.
It then writes a summary of the data and copies it into A or TABL.

5-39

R DL

P N

b s i

PRPRI

4.15 ZERQUT

4.15.1 Entry Point: ZERAUT

4.15.2 Purpose

To initialize the basic common blocks before executing each case in a
MESHGEN run.

4.15.3 Calling Sequence

CALL ZERQUT

COMMPN/MESH/ COMMPN/ SYSTEM/
C¢MMPN/MLINE/ COMMON/ IBDATA/
CEMMPN/CONTRL/ CAMM@N/PSPC/
COMMPN/ELTAB/

Preom wetsensmns e wESIO I g

PR

4.16 BLOCK DATA MESHBD
4.16.1 Entry Point: MESHBD

4.16.2 Purpose
To initialize machine-dependent parameters held in common blocks /SYS1/
and /SYS2/.

5- 41

-2 oo

PRSP

5. LEXICAL ANALYSIS SUBROUTINES

5.1 LEXER

5.1.1 Entry Point: LEXER

5.1.2 Purpose

To perform the lexical analysis of MESHLAN statements, and to initialize
control arrays for each M@DEL.

5.1.3 Calling Sequence

CALL LEXER

5.1.4 Method

The logical flow of LEXER is shown in Figure 2. The routine determines the
level of the MESHGEN command and calls the processing routine.

PR -

b o

Call ZERGUT

.

Get Next Card

Call
LEVEL1

Primary
Command ?

Call

LEVEL2 |

VI

Call
LEVEL3

Call
LEVEL4

Call
LEVELS

Quintary
Command?

No

ENDJ@B = .TRUE.

Error: Invalid Keyword

RETURN

FIGURE 2., LOGICAL FLOW OF LEXER

AL

5.2 LEVELl

5.2.1 Entry Point: LEVEL1

5.2.2 Purpose

To translate and process the primary MESHLAN commands:

M@DEL, GEPMETRY, MESH, GRAV, PL@T, PLT2, PUNCH, ENDM, DIAG,
FIND, MACH, and PLTH*.

5.2,3 Calling Sequence

CALL LEVEL1(P)
vhere:

P - Primary command ID - integer - input.

COMMPN/MESH/ COMMPN/MACHON/
COMMPN/LPADS/ COMMPN/ IPDATA/
COMAPN/BFLSTR/ C@MM@N/CONTRL/

5.2.4 Method

The primary commands are translated and values inserted into the appropriate
common blocks.

*PLTHEAD is a facility-dependent command for MSFC.

5- 4é

———_—

P
PN v

o

Y

\:\‘.‘ N SR

5.3 LEVEL2

5.3.1 Entry Point: LEVEL2

5.3.2 Purpose

To translate and process the secondary MESHLAN commands:

SHAPE, B@PUNDARY, STEP, DIVIDE, and @PR¢P.

5.3.3 Calling Sequence

CALL LEVEL2(P,S)
where:
P,S - Primary and secondary command ID's - input- integer.
C¢MM¢N'/C¢NTRL/
COMMPN/MESH/
5.3.4 Method

Tests are performed to check the context of the secondary commands. The
commands are then translated and the values inserted into the common blocks.

[

5.4 LEVEL3

5.4.1 Entry Point: LEVEL3

5.4.2 Purpose

To translate and process tertiary MESHLAN commands:

SHELL, S@LID, ZPR@P, and STRINGER.

5.4.3 Calling Sequence

CALL LEVEL3(P,S,T)
where:
P,S,T - Primary, secondary and tertiary command ID's - integer - input.

COrMPN/MESH/

5.4.4 Method

Tests are performed to check the context of the tertiary commands. After
translation, the appropriate values are inserted into /MESH/.

A, W e AR SIS WO

Rtk {

5.5 LEVEL4

5.5.1 Entry Point: LEVEL4

5.5.2 Purpose

To translate and process the quaternary MESHLAN commands:

NUMBER, INSYS, @UTSYS, FIX, ELEMENTS, and AL@NG.

5.5.3 Calling Sequence

CALL LEVEL4(P,S,T,Q)
where:
P,S,T,Q - primary, secondary, etc. command ID's - input - integer.

COMMPN/MESH/ COMMON/ELTAB/ COMM@N/PSPC/

5.5.4 Methed

Tests are performed to check the syntax of the LEVEL4 commands. The values
extracted are then inserted into the appropriate common block.

5- 47

g

[

5.6 LEVELS

5.6.1 Entry Point: LEVEL5

5.6.2 Purpose
To process the quintary MESHLAN commands: PROPERTY and THICKNESS.

5.6.3 Calling Sequence

CALL LEVEL5(P,S,T,Q1,Q2)
where:
P,5,7,Q1,Q2 - command ID for primary, secordary, etc. command sequence.

CEMMPN/ELTAB/ELEM(10,8)

5.6.4 Method

Tests are performed to check the syntax of the LEVEL5 commands. Extractel
values are then placed in the /ELTAB/ common block.

5- 48

PP
. . - ’
st o Pl s PYVWEE R A

e A —— o o TP S R T PR e

5.7 CHECKR
5.7.1 Ectry Point: CHECKR

5.7.2 Purpose

To test for the allowability and consistency of the processed MESHLAN

sequence.

5.7.3 Calling Sequence

CALL CHECKR
COMMPN/MESH/ COMMPN/ELTAB/
COMMPN/LBADS/ COMMPN/CONTRL/
COMMPN/BFLSTR/

5- 49

e 4 A AAAIET

e s e e b———

5.8 CETT@K

5.8.1 Entry Point: GETT@K

5.8.2 Purpose

To return the next token of a MESHLAN command and its type.

5.8.3 Calling Sequence

CALL GETT@K
COMMON/LEXIC/TC@DE ,T@K(2)
where:

TCODE - is the token type (see Section 3.2)
TPK - is the actual value of the token

5-50

5.9 GETCRD

5.9.1 Entry Point: GETCRD

5.9.2 Purpose

To process the MESHLAN commands for lexical analysis.

5.9.3 Calling Sequence

CALL GETCRD
COMM@PN/CARD/TPKEN (3,100) ,NTEK
where:

TPK - Array containing the types and values of each token extracted
from the input stream. The contents are:

Row Contents
1 Token type code
1 - BCD
2 - Integer
3 - Real
4 - Delimiter
5 - End-of-card
2 Value of token

5.9.4 Method

When GETCRD is called, it reads the next card image in the input stream.
XRCARD is then called to extract the tokens from the card. This routine
then processes the XRCARD output to a simpler form to be used by the lexical
routines. Although this function is purely overhead, it is of great use in
simplifying coding and understanding of the lexical routines LEVEL1 - LEVELS.

5-51

6. PLOTTING SUBROUTINES

6.1 PLPT2

6.1.1 Entry Points: PL@T, PL@T2

6.1.2 Purpose

To drive the various plotting subroutines.

6.1.3 Calling Sequeunce

CALL PL@T2(FRAME) - 2-D plots
CALL PLAT (FRAME) - 3-D plots
where:

FRAME - last frame number, zero initially

6.1.4 Method
The two entry points set a flag, IPLT23, that determines if 2-D or 3-D plots
are to be made. The title is printed, then PLTRD is called to initialize the

on—-core arrays. If the plot can be made, various subroutines are called to
do each aspect.

5-52

BL

e i A 2 b S o B

-y
-

e
y

6.2 PLINFR

6.2.1 Entry Point: PLTINFR

6.2.2 Purpose

For SC~4020 plots, skip to a new frame, write the plot titles, and increment
the frame number.

6.2.3 Calling Sequence ‘ 1

CALL PLTNFR(FRAME)
where:

FRAME - input/output frame number

P P S S dmatialiiad

6.2.4 Method

If the frame number is < 0, the SC-4020 is initialized. The plot titles
are generated from data in /TITLE/ and /PLIDAT/.

6.2.5 Additional Subroutines

SC-4020 routines LABLV, CAMAV, FRAMEV, and PRINTV are called.

[

5-53

H

‘,\.‘\

6.3 PLTIRD
6.3.1 Entry Point: PLTRD

6.3.2 Purpose
For SC-4020 plots, create the in-core arrays of grid data. The data is

rotated as per user request and converted to rasters. Each type of element
input causes a resorting and/or addition of points on the input file.

6.3.3 Calling Sequence

CALL PLTRD(IFIL,IGRL,IGR,RGR)

where:

IFIL - input file number, binary records of 4 words.

IGRL - input, number of words of open core.

;gg} - output array of grid data, 3 words per point
word 1 = grid ID
word 2 = X raster
word 3 = Y raster

6.3.4 Method :

Each of the element types, defined in the header record of the input file, ?
causes a special sort of the grid data output. For closure in Z or theta,
extra points are introduced.

Pupr————

6.4 TPLAB

6.4.1 Entry Point: TPLAB

6.4.2 Purpose

For SC-4020 plots, places the grid identification number to the right of the
grid point. '

6.4.3 Calling Sequence

CALL TPLAB(IGR)
where:
IGR - 3-word array of grid data

Word Description

1 grid ID number
2 X raster
3 Y raster

6.4.4 Method

The grid set 1s converted to alphanumeric and printed 32 rasters to the
right of the point.

6.4.5 Additional Subroutines

SC-4020 routine PRINTV is required.

5-55

e e <

2 R I
‘J?‘\‘ Wy T
N

2

8 st [PO fRpo
s e . .

1

[

6.5 TPLIN
6.5.1 Entry Point: TPLIN

6.5.2 Purpose

For SC-4020 plots, to call one of the four line~drawing routines.

6.5.3 Calling Sequence

CALL TPLIN(IGR)

where:

IGR - input 3-word grid ID and raster array

5-56

g s amppriome o= ot el

o

¥

- o

6.6 TYPL1
6.6.1 Entry Point: TYPL1

6.6.2 Purpose

For SC-4020 plous, to draw the elements rfor a shell of revolution model.

6.6.3 Calling Sequence

CALL TYPL1(IGR)
where:

IGR -~ 3~-word grid ID and raster array
6.6.4 Method

The pre-defined array of IGR set up by PLTRD is scanned to extract ras.er
locations.

6.6.5 Additional Subroutines

SC-4020 routine LINEV is required.

\¥ 2l
1

57

et

Roo v

—

6.7 TYPL2

6.7.1 Entry Point: TYPL2

6.7.2 Purpose

For SC~4020 plots, to draw the elements for a solid of revolution.

6.7.3 Calling Sequence

CALL TYPL2(IGR)
where:

IGR - 3-word grid ID and raster array

6.7.4 Method

The pre-defined array, IGR, set up by PLTRD is scanned to extract raster
locations.

6.7.5 Additional Subroutines

SC-4020 routine LINEV is required.

5-58

L e o

.“

PN

6.8 TYPL3

6.8.1 Entry Point: TYPL3

6.8.2 Purpose

For SC-4020 plots, to draw the elements for a spherical shell cap.

6.8.3 Calling Sequence

CALL TYPL3(IGR)

where:

IGR - 3-word grid ID and raster array

6.8.4 Method

The grid-defined array, IGR, set up by PLTRD is scanned to extract raster

locations.

6.8.5 Additional Subroutines

$C-4020 routine LTNEV is required.

paas o

A

6.9 TYPL4

6.9.1 Entry Point: TYPL4

6.9.2 Purpose

For $C-4020 plots, to draw the elements for a spherical solid cap.

6.9.3 Calling Sequence

CALL TYPL4 (IGR)
where:

IGR - 3-word grid ID and raster array

6.9.4 Method

The pre-defined array, IGR, set up by PLTRD is called to extract raster
locations.

6.9.5 Additional Subroutines

S§C~4020 routine LINEV is required.

5-60

——

7. COMPUTATIONAL SUBROUTINLS

7.1 GETLIN

7.1.1 Entry Point: GETLIN

7.1.2 Purpose

To generate the mesh lines in each coordinate direction and apply permanent
single-point constraints.

7.1.3 Calling Sequence

CALL GETLIN .
CAMMPAL., CONTRL/ COMM@N/PSPC/ ;
COMMAN/MLINE/ COMMPN/ SHP/
COMMPN/MESH/ CPMMPN/BTAB/

7.1.4 Method

The mesh definition data is accessed from /MESH/. Tuis data is then expanded
to define all the coordinate values for the model. These are then stored in
/MLINE/ (see Section 2.2.3)., 1In addition to this expansion, SPCs are also
applied to each grid line.

l‘\ -

w t

&
*A‘Q T
\\’

BN e el peees e

B ekt
s

N

7.2 QEL@UT
7.2.1 Entry Point: QEL@UT

7.2.2 Purpose

To generate element connection for shell models.

7.2.3 Calling Sequence

CALL QELPUT

COMMPN/CONTRL/ COMM@N /ML LNE/
COMMPN /MESH/ CPMMPN/ELTAB/
5- 62

LIRS w e

7.3 SELQUT
7.3.1 Entry Point: SELQUT

7.3.2 Purpose

To generate element data for solids of revolution (S@LID, TFULL, GFLUILD)

7.3.3 Calling Sequence

CALL SEL@UT
COMM@N/MESR/ CAMMAN/CONTRL/
COMMPN/MLINE/ COMMPN/ELTAB/

7.3.4 Method

The grid point ID numbers and increments are accessed and the appropriate
solid element connection Bulk Data is generated. I. addition, PLPTEL data

is generated for free surfaces and element ranges computed for CFLSTR Bulk
Data.

5-63

R %

[
~,§.
“

[

PRI

7.4 GENSPL

7.4.1 Eatry Point: GENS@L

7.4.2 Purpose

To generate grid points for the genmeralized solid model (GFLUID).

7.4.3 Calling Sequence

CALL GENS@L

COMMPN/CONTRL/ COMMAN/MLINE/
COMMPN/BTAB/ COMMPN/SHP/
COMMAN/MESH/

7.4.4 Method

GENS®L must compute all coordinates for a fluid with a tilted surface knowing
only the boundary function and the tilt angle. The first step is to compute
the height (axial value) of the point on the low end of the surface as shown
in the following illustration:

ZREAL f(Z) = r

23

The equation of the surface line is defined by:

m = tan (%%%) (1)
Z = mr + z1 - mf(Zl) 2)

The value Zgpaj, is obtained by solving this linear equation simultaneously
with r = f(Z). Once these values are found, coordinates are generated at
each elevation, circumferential and radial station by interpolation and sulu-
tion of Eq. (2). At each step, GRID Bulk Data is generated. A subsequent
call to SEL@UT generates the element connection cards.

5- 64

PSS A
q 5
i‘.‘ voR o Y

P g

I e e e

7.5 SHLCAP
7.5.1 Entry Point: SHLCAP

7.5.2 Purpose

To generate both grid points and element connections for the shell
cap model.

7.5.3 Calling Sequence

CALL SHLCAP
CAMMPN/ CONTRL/ COMMPN/ELTAB/
COMMPN/MESH/ CoMMPN/PSDC/

ain

P ..

wn mamA "

T L I

7.6 SPLCAP

7.6.1 Entry Yoint. SPLCAP

7.6.2 Purpose

To generate both grid points and element connections for the solid cap
model. In addition, to generate PLATELs for the fluid free surface, if

applicable.

7.6.3 Calling Sequence

CALL S@LCaP

COMMPN/MLINE/
COMMPN/BTAB/
COMMPN/SHP/

COMMPN/ CANTRL/
COMM@N/MESH/
COMMPN/ELEM/

e

At

4

s EEE e oy

7.7 STRNGR

7.7.1 Entry Point: STRNGR

7.7.2 Purpose

To generate stringer connections (CBAR or CR@D) defined with shell models.

7.7.3 Calling Sequence

CALL STRNGR

COMMPN/MESH/
COMMPN/MLINE/

5-67

2 At~ A

7.8 FLSTR1

7.8.1 Entry Point: FLSTR1

7.8.2 Purpose

To determine the fluid/structure interfaces and generate CFLSTR Bulk Data
cards.

7.8.3 Calling Sequence

CALL FLSTR1(IC@DE)
where:

ICODE - specifies whether the shell elements are on the SAVE file (IU3)
or the scratch file (IU4)

7.8.4 Method

The structure boundary ranges (TMIN, TMAX, ZMIN, ZMAX; see Section 2.1.3) are
read from IU3 or IU4 into core. The fluid element ranges are then read from

the SAVE file one at a time and compared with the shell ranges. All overlapping
shell element ID's are saved. When the process is completed for a given fluid
element, a CFLSTR Bulk Data card (or cards) is generated and the next fluid
element is read. This process continues until all fluid elements have been
tested.

5-68

i1)

\ﬁ?‘i\ R R

D R e)

8. SYSTEM CONSIDERATIONS

MESHGEN was written for, and implemented on, an IBM 360/165. It is currently
being implemented on the UNIVAC 1108. With the overlay structure defined in
Figure 3, MESHGEN will execute in 180K decimal bytes (45K words). This

number can be affected by local modifications to system routines, FORTRAN I¢
packages, or SC4020 software.

A list of subroutines that can cause implementation problems when installing
on a new system are summarized.

8.1 OVERLAY FOR MESHGEN

MAIN GRDGEN BUG ZERPUT
MESHBD FUNC MAPFNS PAGE
R L INT2AL DATAEX PLTHED
INIT GETT@K DIVLIN ENC@DE
ROOT INTERP GETCRD IFl PNCHER
SEGMENT DEC@DE MESAGE STRNGR WRTHED
GRDJUT PREPAS GETVAL APRXEQ
FLSTR1 CHECKR

OVERLAY B [" ‘]

XRCARD CCARD PLPT2
LEXER STRAUT PLTNFR
LEVEL1 WED@GUT PLTRD
LEVEL2 TETQUT TPLAB
LEVEL3 HEX@UT TPLIN
LEVEL4 PL@TEL TYPL1
LEVELS FREQUT TYPL2
GETLIN TYPL3
TYPL4
OVERLAY A [l 1
SOLCAP SHLCAP QEL@UT GENS@L SEL@UT

FIGURE 3. OVERLAY FOR MESHGEN

5-69

e BN Y e g NG, -~
- -,

8.2 MACHINE OR FACILITY DEPENDENT ROUTINES

8.2.1 MAPFNS

This routine is written in assembly language and must be written for each
system before implementation.

8.2.2 PREPAS

Used to convert ERCDIC to BCD before processing begins. For systems utilizing
BCD only, the routine should be rewritten to simply copy the input.

8.2.3 MESHBD

The machine ccnstants defined in this BLOCK DATA should be changed to reflect
the system architecture.

8.2.4 PLPTS

The plot driver routine, PL@T2, as well as all plot interfaces should be
checked to conform to facility-dependent conversion.

5-70

